引用本文:
【打印本页】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 344次   下载 349 本文二维码信息
码上扫一扫!
分享到: 微信 更多
混合勒贝格空间上双参数奇异积分算子的端点弱估计
王潇
作者单位
王潇 南开大学数学科学学院, 天津 300071 
摘要:
本文研究了混合勒贝格空间上双参数奇异积分算子的有界性.利用双参数奇异积分算子在勒贝格空间的有界性和一个向量值延拓理论.获得了双参数奇异积分算子在混合勒贝格空间上的端点弱估计和强型估计.并给出了乘积空间上非卷积型奇异积分算子的一个应用.这些结果将文献[3]中的结论推广到混合范数情形.
关键词:  双参数奇异积分算子  混合范数  端点弱估计
DOI:
分类号:O174.2
基金项目:
ENDPOINT WEAK-TYPE ESTIMATES OF BI-PARAMETER SINGULAR INTEGRAL OPERATORS ON MIXED LEBESGUE SPACES
WANG Xiao
Abstract:
In this paper, the boundedness of the bi-parameter singular integral operators on mixed Lebesgue spaces is studied. Using the boundedness of the bi-parameter singular integral operators on Lebesgue spaces and a vector-valued extension theory. We obtain the endpoint weaktype estimates and strong-type estimates for a bi-parameter singular integral operators on mixed Lebesgue spaces. An application to a non-convolution singular integral operators on product spaces is also given. These results extend the conclusion of [3] to the mixed norm case.
Key words:  bi-parameter singular integrals  mixed norms  endpoint weak-type estimates