引用本文:
【打印本页】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 880次   下载 1177 本文二维码信息
码上扫一扫!
分享到: 微信 更多
Lüroth展式相邻字符乘积的部分和的度量性质和相关分形维数
胡慧, 程珵
南昌航空大学数学与信息科学学院, 江西 南昌 330063
摘要:
本文研究了Lüroth展式字符乘积的部分和Sn(x)=∑i=1n di(x)di+1(x)的度量性质和相关分形集的Hausdorff维数, 其中di(x)表示x∈(0,1)的Lüroth展式的第i个字符.利用对部分和序列的修正和适当分形集的构造, 获得了Sn(x)/nlog2n 依勒贝格测度收敛于1/2并且得到了相关例外集的Hausdorff维数, 扩展了数的展式的维数研究.
关键词:  Lüroth展式  字符乘积  部分和  Hausdorff维数
DOI:
分类号:O156
基金项目:国家自然科学基金~(11701261).
ON THE METRIC PROPERTIES OF THE SUM OF PRODUCTS OF CONSECUTIVE DIGITS IN LüROTH EXPANSIONS AND RELATED DIMENSIONS
HU Hui, CHENG Cheng
School of Mathematics and Information Science, Nanchang Hangkong University, Nanchang 330063, China
Abstract:
In this paper, we consider the metric properties of Sn(x)=∑i=1n di(x)di+1(x) and the Hausdroff dimension of related fractal sets, where di(x) is the i-th digit of the Lüroth expansions of x ∈ [0, 1). By some modification of Sn(x) and the construction of suitable fractal subsets, we prove that Sn(x)/n log2 n converges to 1=2 in Lebesgue measure λ, and we get the Hausdorff dimensions of related exceptional sets. It extends related dimensional results about expansions of numbers.
Key words:  Lüroth expansions  product of digits  partial sum  Hausdorff dimension