引用本文:
【打印本页】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 458次   下载 602 本文二维码信息
码上扫一扫!
分享到: 微信 更多
Blaschke张量的行列式为常数的2维子流形的研究
余应佳,郭震
作者单位
余应佳 云南师范大学数学学院, 云南 昆明 650500 
郭震 云南师范大学数学学院, 云南 昆明 650500 
摘要:
本文研究了S2+p中2维子流形的莫比乌斯刚性问题. 设M2是2 + p维单位球S2+p中的无脐子流形, M2S2+p的莫比乌斯变换群下的四个莫比乌斯基本量为莫比乌斯度量g, Blaschke张量A, 莫比乌斯形式Φ 以及莫比乌斯第二基本形式B, 利用不等式估计, 证明了下列刚性定理: 设x : M2S2+p是2 + p维单位球S2+p中莫比乌斯形式消失的2维紧致子流形, Blaschke张量A的行列式Det A = c(const) > 0, 若tr \begin{document}$A \ge \frac{1}{4}$\end{document}, 那么x(M2) 莫比乌斯等价于S2+p中常曲率极小子流形或者\begin{document}${S^3}\left( {\frac{1}{{\sqrt {1 + {c^2}} }}} \right)$\end{document}中环面\begin{document}${S^1}\left( r \right) \times {S^1}\left( {\sqrt {\frac{1}{{1 + {c^2}}} - {r^2}} } \right)$\end{document}, 其中\begin{document}${r^2} = \frac{{2 - \sqrt {1 - 64c} }}{{4 + \left( {1 + {c^2}} \right)}}$\end{document}. 本文的证明补充了文献[3] 中2维子流形情形.
关键词:  2维子流形  莫比乌斯度量  莫比乌斯形式  莫比乌斯第二基本形式  Blaschke张量
DOI:
分类号:O186.12
基金项目:
STUDY ON 2-DIMENSIONAL SUBMANIFOLDS WITH CONSTANT DETERMINANT OF BLASCHKE TENSOR
Ying-jia YU,Zhen GUO
Abstract:
In this paper, we study the rigidity of 2-dimensional submanifolds in S2+p. Let M2 be a 2-dimensional submanifold in the (2+p)-dimensional unit sphere S2+p without umbilic points. Four basic invariants of M2 under the Moebius transformation group of S2+p are Moebius metric g, Blaschke tensor A, Moebius form Φ and Moebius second fundamental form B. In this paper, by using inequality estimation, we proved the following rigidity theorem: Let x : M2S2+p be a 2-dimensional compact submanifold in the (2 + p)-dimensional unit sphere S2+p with vanishing Moebius form Φ and Det A = c(const) > 0, if tr \begin{document}$A \ge \frac{1}{4}$\end{document}, then either x(M2) is Moebius equivalent to a minimal submanifold with constant scalar curvature in S2+p, or \begin{document}${S^1}\left( r \right) \times {S^1}\left( {\sqrt {\frac{1}{{1 + {c^2}}} - {r^2}} } \right)$\end{document} in \begin{document}${S^3}\left( {\frac{1}{{\sqrt {1 + {c^2}} }}} \right)$\end{document}; where \begin{document}${r^2} = \frac{{2 - \sqrt {1 - 64c} }}{{4 + \left( {1 + {c^2}} \right)}}$\end{document}. Our results complement the case 2-dimensional submanifolds in document[3].
Key words:  2-dimensional submanifolds  Moebius metric  Moebius form  Moebius second fundamental form  Blaschke tensor