引用本文:
【打印本页】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 680次   下载 1637 本文二维码信息
码上扫一扫!
分享到: 微信 更多
具有充分下降性的改进FR共轭梯度法
马国栋,江羡珍,靳文慧
作者单位
马国栋 广西民族大学数学与物理学院, 广西 南宁 530006 
江羡珍 广西民族大学数学与物理学院, 广西 南宁 530006 
靳文慧 广西民族大学数学与物理学院, 广西 南宁 530006 
摘要:
本文研究了大规模无约束优化问题,提出了一个基于改进的FR共轭参数公式的共轭梯度法.不依赖于任何线搜索准则,算法所产生的搜索方向总是充分下降的.在标准Wolfe线搜索准则下,获得了新算法的全局收敛性.最后,对所提出的算法进行了初步数值实验,其结果表明所改进的方法是有效的.
关键词:  无约束优化  共轭梯度法  标准Wolfe线搜索  全局收敛性
DOI:
分类号:O221.2
基金项目:广西自然科学基金资助(2018GXNSFAA281099);国家自然科学基金资助(11771383).
THE IMPROVED FR CONJUGATE GRADIENT METHOD WITH SUFFICIENT DESCENT PROPERTY
MA Guo-dong,JIANG Xian-zhen,JIN Wen-hui
Abstract:
In this paper, we consider solving large-scale unconstrained optimization, based on the improved parameter formula of the FR method, a conjugate gradient method that is proposed. Without any line search, we proved that the search direction always satisfied sufficient descent condition at each iteration. The global convergence of the proposed method is proved under the standard Wolfe inexact line search condition. Finally, some elementary numerical experiments are reported, which show that the algorithm is promising.
Key words:  unconstrained optimization  conjugate gradient method  Wolfe line search  global convergence