|
摘要: |
本文研究了四阶周期边值问题 u(4)(t)- βu"(t)+αu(t)=f(t,u(t),u'(t),u"(t),u'''(t)),t∈[0,1], u(i)(0)=u(i)(1),i=0,1,2,3 正解的存在性,其中f:[0,1]×[0,+∞)×R3→[0,+∞)连续.利用锥上的不动点指数理论,获得了该问题正解的存在性结果,推广了已有文献的相关结果. |
关键词: 四阶常微分方程 正解 锥 不动点指数理论 |
DOI: |
分类号:O175.8 |
基金项目:国家自然科学基金基金资助(11661071). |
|
POSITIVE SOLUTIONS OF PERIODIC BOUNDARY VALUE PROBLEMS FOR A CLASS OF FOURTH ORDER ORDINARY DIFFERENTIAL EQUATIONS |
WANG Tian-xiang,LI Yong-xiang
|
Abstract: |
In this paper, we discuss the existence of positive solution for the fourth-order periodic boundary value problem u(4)(t) - βu"(t)+αu(t)=f(t, u(t), u'(t), u"(t), u'''(t)), t ∈[0, 1], u(i)(0)=u(i)(1), i=0, 1, 2, 3 where f:[0, 1]×[0, +∞)×R3→[0, +∞) continuous. By using the fixed point index theory on cone, the existence of positive solution is obtained, and extends some related conclusions on this topic. |
Key words: fourth-order ordinary differential equations positive solution cone fixed point index theory |