引用本文:
【打印本页】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 1064次   下载 1348 本文二维码信息
码上扫一扫!
分享到: 微信 更多
δ Jordan-李三系上带有权λ的k-阶广义导子
刘宁1, 张庆成2
1.华南理工大学数学学院, 广东 广州 510604;2.东北师范大学数学与统计学院, 吉林 长春 130024
摘要:
本文研究了δ Jordan-李三系上带有权λ的k-阶广义导子的相关问题.通过计算,得到了每一个δ Jordan-李三系上带有权λ的k-阶Jordan三角θ-导子都是一个带有权λ的k-阶θ-导子.在定义下,给出了带有权λ的k-阶Jordan三角θ-导子的另一种等价形式.同时,建立了带有权λ的k-阶广义(θφ)-导子和Rota-Baxter δ Jordan-李三系上带有权λ的Rota-Baxter算子的遗传性质,得到了每一个Rota-Baxter δ Jordan-李代数能看成一个Rota-Baxter δ Jordan-李三系的结论.
关键词:  δ Jordan-李三系  k-阶(θ,φ)-导子  k-阶Jordan三角(θ,φ)-导子  λ  λ的Rota-Baxter δ Jordan-李三系
DOI:
分类号:O152.5
基金项目:Supported by NSFC(11471090), and NSFJL(20130101068JC).
K-ORDER GENERALIZED DERIVATIONS OF WEIGHT λ ON δ JORDAN-LIE TRIPLE SYSTEMS
LIU Ning1, ZHANG Qing-cheng2
1.School of Mathematics, South China University of Technology, Guangzhou 510604, China;2.School of Mathematics and Statistics, Northeast Normal University, Changchun 130024, China
Abstract:
This paper deals with the k-order generalized derivations of weight λ on δ JordanLie triple systems. By computing, we conclude that every k-order Jordan triple θ-derivation of weight λ on δ Jordan-Lie triple systems is a k-order θ-derivation of weight λ. Under the definitions, we give another equivalent form of k-order Jordan triple θ-derivation of weight λ. Meanwhile, We also establish the inheritance property of k-order generalized (θ,φ)-derivation of weight λ and Rota-Baxter operator of weight λ on Rota-Baxter δ Jordan-Lie triple systems. We obtain that every Rota-Baxter δ Jordan-Lie algebra can be seen as a Rota-Baxter δ Jordan-Lie triple system.
Key words:  δ Jordan-Lie triple systems  k-order (θ, φ)-derivations  k-order Jordan triple (θ, φ)-derivations  weight λ  Rota-Baxter δ Jordan-Lie triple systems of weight λ