引用本文:
【打印本页】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 873次   下载 1103 本文二维码信息
码上扫一扫!
分享到: 微信 更多
求解稀疏相位恢复问题的随机交替方向法
蔡剑锋,焦雨领,吕锡亮,游俊韬
作者单位
蔡剑锋 香港科技大学数学系, 香港 999077 
焦雨领 中南财经政法大学统计与数学学院, 湖北 武汉 430073 
吕锡亮 武汉大学数学与统计学院;计算科学湖北省重点实验室, 湖北 武汉 430072 
游俊韬 香港科技大学数学系, 香港 999077;南方科技大学数学系, 广东 深圳 518055 
摘要:
近年来稀疏相位恢复问题受到了越来越多的关注.本文提出了一种随机交替方法方法求解稀疏相位恢复问题,该算法采用硬阈值追踪算法求解带稀疏约束的最小二乘子问题.大量的数值实验表明,该算法可以通过Os log n)次测量(理论上最少测量值)稳定的恢复ns稀疏向量,并且在随机初值下可以获得全局收敛性.
关键词:  相位恢复  稀疏信号  随机交替方向法  硬阈值追踪
DOI:
分类号:O242.1;O241.5
基金项目:The first author is partially supported by Hong Kong Research Grant Council (HKRGC) grant GRF 16306317; the second author is partially supported by National Science Foundation of China (NSFC) (11871474; 61701547); the third author is partially supported by NSFC (11871385).
A STOCHASTIC ALTERNATING MINIMIZATION METHOD FOR SPARSE PHASE RETRIEVAL
CAI Jian-feng,JIAO Yu-ling,LU Xi-liang,YOU Jun-tao
Abstract:
Sparse phase retrieval plays an important role in many fields of applied science and thus attracts lots of attention. In this paper, we propose a stochastic alternating minimization method for sparse phase retrieval (StormSpar) algorithm which empirically is able to recover n-dimensional s-sparse signals from only O(s log n) measurements without a desired initial value required by many existing methods. In StormSpar, the hard-thresholding pursuit (HTP) algorithm is employed to solve the sparse constrained least-square sub-problems. The main competitive feature of StormSpar is that it converges globally requiring optimal order of number of samples with random initialization. Extensive numerical experiments are given to validate the proposed algorithm.
Key words:  phase retrieval  sparse signal  stochastic alternating minimization method  hard-thresholding pursuit