|
摘要: |
本文研究了一类带Neumann边界条件的脉冲分数阶偏微分方程解的振动性质.利用修正后的Riemann-Liouille分数阶定义下的相关性质及Riccati变换和不等式技巧,获得了一些判别解振动的充分条件,并给出相关例子说明了主要结论,推广了文献[12]中的结果. |
关键词: 脉冲 分数阶偏微分方程 修正后的Riemann-Liouille分数阶导数 振动 |
DOI: |
分类号:O175.2 |
基金项目:国家自然科学基金重点项目(41630643);国家自然科学基金青年项目(11801530). |
|
OSCILLATION FOR A CLASS OF IMPULSIVE FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS |
FENG Qian,MA Qing-xia,LIU An-ping
|
Abstract: |
In this paper, we study the oscillation criteria for a class of impulsive fractional partial differential equations with Neumann boundary condition. By using the properties of the modiffed Riemann-Liouville fractional partial differential equations and a generalized Riccati technique and the differential inequality methods, some sufficient conditions for the oscillatory behavior of the solution are obtained. As an application, the relevant example is given to illustrate the main conclusions, which generalize the results in [12]. |
Key words: impulsive fractional partial differential equations modiffed Riemann-Liouville fractional partial derivative oscillation |