|
摘要: |
本文研究了*-环R的一个core可逆元成为EP元的条件.通过对几个给定方程的解的探讨,主要证明了如下结果:设a ∈ R# ∩ R†,则a ∈ REP当且仅当下面的方程中有一个方程在χa中至少有一个解,其中χa={a,a*,a†,a#,(a#)*,(a†)*}:(1)xaa*a=a*a2x;(2)a*aa*x=xa*a*a;(3)xa*aa*=aa*a*x;(4)aa*ax=xa2a*. |
关键词: EP元 群可逆元 MP可逆元 方程的解 χa |
DOI: |
分类号:O153.3 |
基金项目:国家自然科学基金资助项目 (11471282). |
|
SOME NEW CHARACTERIZATIONS ON EP ELEMENTS |
SHI Li-yan,MA Li,WEI Jun-chao
|
Abstract: |
In this paper, we give some conditions for a core invertible element being EP element in a *-ring R. We mainly prove the following results by discussing the solutions of some given equations: Let a ∈ R# ∩ R†. Then a ∈ REP if and only if one of the following equations has at least one solution in χa, where χa = {a, a*, a†, a#, (a#)*, (a†)*}: (1) xaa*a = a*a2x; (2) a*aa*x = xa*a*a;(3) xa*aa*= aa*a*x; (4) aa*ax = xa2a*. |
Key words: EP element group invertible element MP invertible element the soluion of equation χa |