| 摘要: | 
			 
		     | 本文研究了黎曼流形上熵幂的凹性问题.利用非线性Bochner公式和Bakry-Émery的方法,证明了当满足曲率维数条件CD(-K,m)(K ≥ 0,m ≥ n)时,对于加权双重扩散方程的正解,相关的p-Rényi熵幂是凹的,推广了之前多孔介质方程以及Ricci曲率非负情形下的结果. | 
			
	         
				| 关键词:  凹性  p-Rényi熵幂  加权双重扩散方程  m-Bakry-Émery Ricci曲率 | 
			 
                | DOI: | 
            
                | 分类号:O175.29 | 
			 
             
                | 基金项目:Supported by National Natural Science Foundation of China (11701347). | 
          |  | 
           
                | THE CONCAVITY OF p-RÉNYI ENTROPY POWER FOR THE WEIGHTED DOUBLY NONLINEAR DIFFUSION EQUATIONS ON WEIGHTED RIEMANNIAN MANIFOLDS | 
           
			
                | WANG Yu-Zhao, ZHANG Hui-Ting | 
           
		   
		   
                | School of Mathematical Sciences, Shanxi University, Taiyuan 030006, China | 
		   
             
                | Abstract: | 
			
                | In this paper, we study the concavity of the entropy power on Riemannian manifolds. By using the nonlinear Bochner formula and Bakry-Émery method, we prove p-Rényi entropy power is concave for positive solutions to the weighted doubly nonlinear diffusion equations on the weighted closed Riemannian manifolds with CD(-K, m) condition for some K ≥ 0 and m ≥ n, which generalizes the cases of porous medium equation and nonnegative Ricci curvature. | 
	       
                | Key words:  concavity  p-Rényi entropy power  weighted doubly nonlinear diffusion equations  m-Bakry-Émery Ricci curvature |