|
摘要: |
本文研究了黎曼流形上熵幂的凹性问题.利用非线性Bochner公式和Bakry-Émery的方法,证明了当满足曲率维数条件CD(-K,m)(K ≥ 0,m ≥ n)时,对于加权双重扩散方程的正解,相关的p-Rényi熵幂是凹的,推广了之前多孔介质方程以及Ricci曲率非负情形下的结果. |
关键词: 凹性 p-Rényi熵幂 加权双重扩散方程 m-Bakry-Émery Ricci曲率 |
DOI: |
分类号:O175.29 |
基金项目:Supported by National Natural Science Foundation of China (11701347). |
|
THE CONCAVITY OF p-RÉNYI ENTROPY POWER FOR THE WEIGHTED DOUBLY NONLINEAR DIFFUSION EQUATIONS ON WEIGHTED RIEMANNIAN MANIFOLDS |
WANG Yu-Zhao,ZHANG Hui-Ting
|
Abstract: |
In this paper, we study the concavity of the entropy power on Riemannian manifolds. By using the nonlinear Bochner formula and Bakry-Émery method, we prove p-Rényi entropy power is concave for positive solutions to the weighted doubly nonlinear diffusion equations on the weighted closed Riemannian manifolds with CD(-K, m) condition for some K ≥ 0 and m ≥ n, which generalizes the cases of porous medium equation and nonnegative Ricci curvature. |
Key words: concavity p-Rényi entropy power weighted doubly nonlinear diffusion equations m-Bakry-Émery Ricci curvature |