| 摘要: | 
			 
		     | 令R是有单位元1的2-挠自由交换环,Ln(R)是由R上所有n阶反对称矩阵构成的李代数.本文研究了Ln(R)(n≥3)上局部导子和2-局部导子的性质.利用Ln(R)作为李代数的完备性和矩阵计算技巧,证明了Ln(R)上的每个局部导子和2-局部导子都是导子.推广了Ln(R)上关于导子的主要结果. | 
			
	         
				| 关键词:  导子  局部导子  2-局部导子  反对称矩阵李代数  交换环 | 
			 
                | DOI: | 
            
                | 分类号:O152.5 | 
			 
             
                | 基金项目:国家自然科学基金资助(11471090). | 
          |  | 
           
                | LOCAL DERIVATIONS AND 2-LOCAL DERIVATIONS ON THE LIE ALGEBRA OF ANTISYMMETRIC MATRICES OVER A COMMUTATIVE RING | 
           
			
                | WANG Di, WANG Yin | 
           
		   
		   
                | School of Mathematical Sciences, Dalian University of Technology, Dalian 116024 | 
		   
             
                | Abstract: | 
			
                | Let R be a 2-torsion free commutative ring with identity 1 and Ln(R) a Lie algebra consisting of all n×n antisymmetric matrices over R. The aim of this paper is to study the character of the local derivations and 2-local derivations of Ln(R). By using that Ln(R) is a complete Lie algebra and the skill of matrix computation, it is proved that every local derivation and every 2-local derivation of Ln(R) are derivations, which extends the main result of derivations of Ln(R). | 
	       
                | Key words:  derivation  local derivation  2-local derivation  Lie algebra of antisymmetric matrices  commutative ring |