|
摘要: |
本文研究了四元数体上Sylvester方程具有Toeplitz矩阵约束解及其最佳逼近问题.利用四元数矩阵的实分解和矩阵Kronecker积,获得四元数Sylvester方程AX-XB=C具有Toeplitz矩阵解的充要条件及其通解表达式.同时在Toeplitz解集合中,得到与预先给定的四元数Toeplitz矩阵有极小Frobenius范数的最佳逼近解. |
关键词: 四元数体 Sylvester方程 Toeplitz矩阵 最佳逼近 |
DOI: |
分类号:O151.21 |
基金项目:国家自然科学基金项目(11661011);广西民族大学研究生创新项目(gxun-chxzs2017142). |
|
TOEPLITZ SOLUTION OF SYLVESTER EQUATION AND ITS OPTIMAL APPROXIMATION OVER QUATERNION FIELD |
HUANG Jing-pin,LAN Jia-xin,MAO Li-ying,WANG Min
|
Abstract: |
In this paper, we study the Toeplitz matrix solution of Sylvester equation and its optimal approximation over quaternion field. By using the real representation of a quaternion matrix and Kronecker product of matrices, the necessary and sufficient condition for the existence of a Toeplitz matrix solution and the general solution of the quaternion Sylvester equation AX-XB=C are obtained. Meanwhile, in the Toeplitz solution set, the expression of the optimal approximation solution to the given quaternion Toeplitz matrix is derived. |
Key words: quaternion field Sylvester equation Toeplitz matrix optimal approximation |