|
摘要: |
本文研究了极大Bochner-Riesz平均的有界性.利用极大Bochner-Riesz平均的点态估计及弱Musielak-Orlicz Hardy空间的原子分解,得到了极大Bochner-Riesz平均从弱Musielak-Orlicz Hardy空间到弱Musielak-Orlicz空间是有界的.即使对任意的(x,t)∈Rn×[0,∞),当Musielak-Orlicz函数ϕ(x,t)取为特殊的Orlicz函数Φ(t)时,上述结果也是新的.这个结果是王华加权空间上的结果(见文献[1])在Musielak-Orlicz空间情形下的推广. |
关键词: Bochner-Riesz平均 Muckenhoupt权 Orlicz函数 Hardy空间 |
DOI: |
分类号:O174.2 |
基金项目:Supported by National Natural Science Foundation of China (11461065; 11661075). |
|
AN ESTIMATE FOR MAXIMAL BOCHNER-RIESZ MEANS ON MUSIELAK-ORLICZ HARDY SPACES |
WANG Wen-hua,QIU Xiao-li,WANG Ai-ting,LI Bao-de
|
Abstract: |
In this paper, we study the boundedness of maximal Bochner-Riesz means. By using the pointwise of maximal Bochner-Riesz means and the atomic decomposition of weak Musielak-Orlicz Hardy space, we establish the boundedness of maximal Bochner-Riesz means from weak Musielak-Orlicz Hardy space to weak Musielak-Orlicz space. This result is new even when ϕ(x, t):=Φ(t) for all (x, t)∈Rn×[0, ∞), where Φ is an Orlicz function, and it is an extension to Musielak-Orlicz spaces from the setting of the weighted spaces of Wang[1]. |
Key words: Bochner-Riesz means Muckenhoupt weight Orlicz function Hardy space |