| 摘要: |
| 本文研究了一类具有凸凹非线性项与Sobolev-Hardy次临界指标的椭圆方程.利用LusternikSchnirelmann畴数理论以及Nehari流形结构与纤维丛映射的关系,改善了方程在Sobolev空间Wa1,p(RN)中正解的存在性与多重性. |
| 关键词: 次临界Sobolev-Hardy指标 Nehari流形 变号位势 凸凹非线性项 |
| DOI: |
| 分类号:O175.25 |
| 基金项目:Supported by National Natural Science Foundation of China (11371282; 11571259). |
|
| MULTIPLICITY OF POSITIVE SOLUTIONS FOR QUASI-LINEAR ELLIPTIC EQUATIONS INVOLVING CONCAVE-CONVEX NONLINEARITY AND SOBOLEV-HARDY TERM |
|
DU Ming, LIU Xiao-chun
|
|
School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China
|
| Abstract: |
| In this paper, we investigate the quasi-linear elliptic equations involving concaveconvex nonlinearity and Sobolev-Hardy term. By using the theory of the Lusternik-Schnirelmann category and the relationship between the Nehari manifold and fibering maps, we get some improvement on existence and multiplicity of positive solution. |
| Key words: subcritical Sobolev-Hardy exponent Nehari manifold sign-changing weight concave-convex nonlinearity |