|
摘要: |
本文研究了上半空间和单位球上的调和Bergman-Orlicz空间的刻画及调和函数差商的有界性.给出了调和Bergman-Orlicz空间分别在欧氏度量,双曲型度量,伪双曲型度量下的Lipschitz型刻画.利用这些刻画获得了调和函数差商的有界性,这些结果推广了相应于上半空间和单位球上的调和Bergman空间上的结果. |
关键词: 调和Bergman-Orlicz空间 Lipschitz型刻画 双曲型度量 伪双曲型度量 |
DOI: |
分类号:O174.3 |
基金项目:海南省自然科学基金(2018CXTD338);国家自然科学基金(11761026;11761027). |
|
LIPSCHITZ TYPE CHARACTERIZATIONS OF HARMONIC BERGMAN-ORLICZ SPACES |
MA Ru-meng,XU Jing-shi
|
Abstract: |
We study characterizations of harmonic Bergman-Orlicz spaces and the boundedness of difference quotients of harmonic functions on the upper half-space or the unit ball. First, we give Lipschitz type characterizations of harmonic Bergman-Orlicz spaces via the Euclidean, hyperbolic, and pseudo-hyperbolic metrics. By these characterizations, we obtain the boundedness of difference quotients of harmonic functions on the upper half-space or the unit ball, which generalize those for harmonic Bergman spaces on the upper half-space or the unit ball. |
Key words: harmonic Bergman-Orlicz space Lipschitz characterization hyperbolic metric pseudo hyperbolic metric |