| 摘要: |
| 本文研究了一类具有特殊形式的矩阵A的两个逆特征值问题.利用箭形矩阵和Jacobi矩阵的性质,将此类矩阵逆特征值问题转换为线性方程组问题,得到了问题有唯一解的充分必要条件,给出了解的表达式及相应数值例子,推广了箭形矩阵和Jacobi矩阵逆特征值问题. |
| 关键词: 箭形矩阵 Jacobi矩阵 广义箭状矩阵 逆特征值问题 |
| DOI: |
| 分类号:O151.21 |
| 基金项目:国家自然科学基金(11461015). |
|
| INVERSE EIGENVALUE PROBLEMS FOR A CLASS OF SPECIAL MATRICES |
|
DUAN Fu-jian, FANG Tian, YUAN Fan
|
|
School of Mathematics and Computational Science, Guilin University of Electronic Technology, Guilin 541004, China
|
| Abstract: |
| In this paper, we study two inverse eigenvalue problems of a class of matrix A with special form. By using the properties of arrow matrix and Jacobi matrix, we transform the inverse eigenvalue problem of this kind of matrix into a system of linear equations. The necessary and sufficient conditions for the problem to have a unique solution are obtained, and the expressions of the understanding and the corresponding numerical examples are given, which is a generalization of the inverse eigenvalue problem of the arrow shaped matrix and the Jacobi matrix. |
| Key words: arrow matrix Jacobi matrix generalized arrow matrix inverse eigenvalue problem |