|
摘要: |
本文研究了具有加权测度dμ=e-φdv的H型群G上漂移Laplace算子-△G+<▽Gφ,▽G(·)>的Dirichlet特征值问题,建立了该问题的Levitin-Parnovski型特征值不等式,推广包含了Ilias和Makhoul对Heisenberg群上次Laplace算子所获得的结果(J.Geom.Anal.,2012,22(1):206-222). |
关键词: H型群 特征值 漂移Laplace算子 |
DOI: |
分类号:O175.9;O186.1 |
基金项目:国家自然科学基金资助(11001130);中央高校基本科研业务费专项基金资助(30917011335). |
|
LEVITIN-PARNOVSKI-TYPE INEQUALITY FOR EIGENVALUES OF THE DRIFTING LAPLACIAN ON THE H-TYPE GROUP WITH THE WEIGHTED MEASURE |
HAN Cheng-yue,SUN He-jun,JIANG Xu-yong
|
Abstract: |
In this paper, we study the Dirichlet eigenvalue problem of the drifting Laplacian -△G + <▽Gφ, ▽G (·)> on the H-type group G with the weighted measured dμ=e-φdv. We establish a Levitin-Parnovski universal inequality for eigenvalues of this problem, which generalize the result derived by Ilias and Makhoul for the Kohn Laplacian on the Heisenberg group (J. Geom. Anal., 2012, 22(1):206-222). |
Key words: H-type group eigenvalue drifting Laplacian |