| 摘要: | 
	         
			 
		     | 本文研究了Newman-α型有理算子逼近|x|α(1 ≤ α < 2)收敛速度的问题,取插值结点组为X={xi=bi,b=m(-1)/√n}i=1n,其中e < m < n.利用基本不等式以及放缩法,获得了逼近阶为3e(-α√n)/(logm). | 
	         
			
	         
				| 关键词:  有理插值  Newman-α型有理算子  逼近阶 | 
	         
			 
                | DOI: | 
           
            
                | 分类号:O174.41 | 
             
			 
             
                | 基金项目:国家自然科学基金资助项目(11601110). | 
             
           | 
           
                | ON RATIONAL INTERPOLATION TO |x|α | 
           
           
			
                | 
				
				XU Jiang-hai1, ZHAO Yi2
						
				
				 | 
           
           
		   
		   
                | 
				
				1.School of Science, Hangzhou Dianzi University, Hangzhou 310018, China;2.School of Science, Hangzhou Normal University, Hangzhou 311121, China
				
				 | 
           
		   
             
                | Abstract: | 
              
			
                | In this paper, we study the problem of the convergence rate of Newman-α rational operator approximation to|x|α(1 ≤ α < 2), and take the interpolation node group as X={xi=bi, b=m(-1)/√n}i=1n, where e < m < n. By using the basic inequality and the scaling method, we obtain that the approximation order is 3e(-α√n)/(logm). | 
            
	       
                | Key words:  rational interpolation  Newman-α type rational operators  order of approximation |