|
摘要: |
本文研究了KdVKS方程ut+δ∂x3u+μ(∂x4u+∂x2u)+α(∂xu)2=0的Cauchy问题.利用Tao的[k;Z]乘子范数估计的方法,在Sobolev空间Hs(R),s >-1中证明了初值问题的局部适定性,结论改进了现有的Biagioni等的结果. |
关键词: KdVKS方程 局部适定性 Cauchy问题 |
DOI: |
分类号:O175.29 |
基金项目:Supported by National Natural Science Foundation of China (10771166); Foundation of Henan Educational Committee (14B110028; 16A110007). |
|
ON THE LOCAL WELL-POSEDNESS FOR THE KDVKS EQUATION |
WANG Hong-wei,ZHANG Yuan-yuan
|
Abstract: |
In this paper, we consider the Cauchy problem for the KdVKS equation ut + δ∂x3u + μ(∂x4u +∂x2u) + α(∂xu)2=0. By means of the[k; Z] multiplier norm method of Tao, we prove the associated initial value problem is locally well-posed in Sobolev spaces Hs(R) for s > -1, which improves the conclusions drawn by Biagioni et al. |
Key words: KdVKS equation local well-posedness Cauchy problem |