| 摘要: |
| 本文研究了Lorentz空间R1n+1中完备的类空λ-超曲面的刚性问题.利用推广了的L-算子的性质和一些积分不等式,最终得到了关于这类超曲面的若干刚性定理,其中包括R1n+1中加权的完备类空自收缩子的刚性,推广了此前欧氏空间完备λ-超曲面的相关结果. |
| 关键词: Lorentz空间 刚性定理 类空λ-超曲面 自收缩子 |
| DOI: |
| 分类号:O186.16 |
| 基金项目:Supported by National Natural Science Foundation of China (11671121; 11171091; 11371018). |
|
| RIGIDITY THEOREMS OF THE SPACE-LIKE λ-HYPERSURFACES IN THE LORENTZIAN SPACE R1n+1 |
|
LI Xing-xiao, CHANG Xiu-fen
|
|
School of Mathematics and Science Information, Henan Normal University, Xinxiang 453007, China
|
| Abstract: |
| In this paper, we study complete space-like λ-hypersurfaces in the Lorentzian space R1n+1. By using the property of generalized L-operator and some integral inequalities, we obtain some rigidity theorems for these hypersurfaces including the complete space-like self-shrinkers with weight in R1n+1, which generalize some related results in the Euclidean space. |
| Key words: Lorentzian space rigidity theorems space-like λ-hypersurfaces self-shrinkers |