|
摘要: |
本文研究了Kähler流形上有关Bakry-Emery曲率的Schur引理.即在Kähler流形上考虑方程Rij+ fij=λgij,其中f,λ是光滑实值函数.利用Bianchi恒等式,得到了λ是常数. |
关键词: Kahler流形 Schur引理 Kähler-Ricci孤立子 |
DOI: |
分类号:O186.12 |
基金项目:Supported by NSFC (11371018; 11671121); Henan Provincial Key Teacher (2013GGJS-057); IRTSTHN (14IRTSTHN023). |
|
A SCHUR'S LEMMA FOR BAKRY-EMERY RICCI CURVATURE ON KÄHLER MANIFOLDS |
HUANG Guang-yue
|
Abstract: |
This paper is to derive a Schur's lemma for Bakry-Emery Ricci curvature on Kähler manifolds. That is, the equation Rij+ fij=λgij with two smooth real-valued functions f, λ is studied on Kähler manifolds. By the Bianchi identity, we obtain that λ must be a constant. |
Key words: Kähler manifolds Schur's lemma Kähler-Ricci soliton |