| 摘要: | 
			 
		     | 本文利用Krasnoselskii不动点定理考虑了一类非齐次迭代泛函微分方程x'(t)=c1x(t)+ c2x[2](t)+ F(t)周期解的存在唯一性问题,推广了迭代泛函微分方程周期解的相关理论. | 
			
	         
				| 关键词:  迭代泛函微分方程  周期解  不动点定理 | 
			 
                | DOI: | 
            
                | 分类号:O193 | 
			 
             
                | 基金项目:Supported by National Natural Science Foundation of China (11326120; 11501069); Foundation of Chongqing Municipal Education Commission (KJ1400528; KJ1600320). | 
          |  | 
           
                | PERIODIC SOLUTIONS OF A NONHOMOGENEOUS ITERATIVE FUNCTIONAL DIFFERENTIAL EQUATION | 
           
			
                | ZHAO Hou-yu1,2 | 
           
		   
		   
                | 1.School of Mathematics, Chongqing Normal University, Chongqing 401331, China;2.Department of Pure Mathematics, University of Waterloo, Waterloo N2L 3G1, Canada | 
		   
             
                | Abstract: | 
			
                | In this paper, we use Krasnoselskii's fixed point theorem to study the existence and uniqueness of periodic solutions of a nonhomogeneous iterative functional differential equation x'(t)=c1x(t)+ c2x[2](t)+ F(t), which develops the theory about the periodic solutions of iterative functional differential equation. | 
	       
                | Key words:  iterative functional differential equation  periodic solutions  fixed point theorem |