|
摘要: |
本文主要研究了Steenrod代数上同调非平凡乘积元问题.设p为大于5的素数,A代表模p的Steenrod代数.通过对May谱序列的详尽组合分析,证明了古典Admas谱序列中乘积元-b03δs+4 ∈ExtAs+10,t(s)(Zp,Zp)的非平凡性,其中p > 7,0 ≤ 6 s < p-5,t(s)=2(p-1)[(s+4)p3+(s+3)p2+(s+5)p+(s+1)]+s.这有助于对球面稳定同伦群中同伦元素非平凡性进行进一步研究. |
关键词: Steenrod代数 上同调 May谱序列 |
DOI: |
分类号:O152.4 |
基金项目:Supported by the Youth Foundation of Hebei Educational Committee (QN2017505); NSFC(11571186). |
|
A NONTRIVIAL PRODUCT OF b03δs+4 IN THE COHOMOLOGY OF THE STEENROD ALGEBRA |
WANG Chong,LIU Xiu-gui
|
Abstract: |
In this paper, we mainly study the nontriviality of the products in the cohomology of the Steenrod algebra. Let p be a prime greater than five and A be the mod p Steenrod algebra. By using the explicit combinatorial analysis of the May spectral sequence, we prove that the product b03δs+4 ∈ ExtAs+10,*(Zp, Zp) is nontrivial, where 0 ≤ 6 s < p -5, which is helpful for us to study the nontriviality of homotopy elements in the stable homotopy of spheres. |
Key words: Steenrod algebra cohomology May spectral sequence |