引用本文:
【打印本页】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 2033次   下载 1136 本文二维码信息
码上扫一扫!
分享到: 微信 更多
关于强可分扩张的注记
徐爱民
作者单位
徐爱民 曲阜师范大学数学科学学院, 山东 曲阜 273165 
摘要:
RS是环,ψ:RS是强可分扩张.本文研究了(Gorenstein)整体维数和表示型在RS之间的关系.利用同调方法,证明了(1)RS有相同的左整体维数,左弱整体维数,左Gorenstein整体维数;(2)若RS是阿丁代数,则RCM-有限的(CM-自由的,有限表示型)当且仅当SCM-有限的(CM-自由的,有限表示型),推广了已知的结果.
关键词:  强可分扩张  左Gorenstein整体维数  CM-有限的
DOI:
分类号:O154.2
基金项目:Supported by Supported by National Natural Science Foundation of China (11401339); NSF of Shandong Province of China (ZR2014AQ024); Youth Foundation and Doctor's Initial Foundation of Qufu Normal University (Xkj201401; BSQD2012042).
NOTES ON STRONGLY SEPARABLE EXTENSIONS
XU Ai-min
Abstract:
Let R and S be rings and ψ:RS a strongly separable extension. In this paper, we study the relationship of (Gorenstein) global dimensions and representation type between R and S. By using the homological methods, we proved that (1) R and S have the same left global dimension, left weak global dimension, left Gorenstein global dimension; (2) Assume that R and S are Artin algebras, then R is CM-finite (resp., CM-free, of finite representation type) if and only if so is S, which generalize some known results.
Key words:  strongly separable extension  left Gorenstein global dimension  CM-finite