| 摘要: |
| 设R和S是环,ψ:R → S是强可分扩张.本文研究了(Gorenstein)整体维数和表示型在R与S之间的关系.利用同调方法,证明了(1)R与S有相同的左整体维数,左弱整体维数,左Gorenstein整体维数;(2)若R和S是阿丁代数,则R是CM-有限的(CM-自由的,有限表示型)当且仅当S是CM-有限的(CM-自由的,有限表示型),推广了已知的结果. |
| 关键词: 强可分扩张 左Gorenstein整体维数 CM-有限的 |
| DOI: |
| 分类号:O154.2 |
| 基金项目:Supported by Supported by National Natural Science Foundation of China (11401339); NSF of Shandong Province of China (ZR2014AQ024); Youth Foundation and Doctor's Initial Foundation of Qufu Normal University (Xkj201401; BSQD2012042). |
|
| NOTES ON STRONGLY SEPARABLE EXTENSIONS |
|
XU Ai-min
|
|
School of Mathematical Sciences, Qufu Normal University, Qufu 273165, China
|
| Abstract: |
| Let R and S be rings and ψ:R → S a strongly separable extension. In this paper, we study the relationship of (Gorenstein) global dimensions and representation type between R and S. By using the homological methods, we proved that (1) R and S have the same left global dimension, left weak global dimension, left Gorenstein global dimension; (2) Assume that R and S are Artin algebras, then R is CM-finite (resp., CM-free, of finite representation type) if and only if so is S, which generalize some known results. |
| Key words: strongly separable extension left Gorenstein global dimension CM-finite |