| 摘要: |
| 本文研究了行m-NSD随机变量阵列的完全收敛性问题.主要利用m-NSD随机变量的Kolmogorov型指数不等式,获得了行m-NSD随机变量阵列的完全收敛性定理,将Hu等(1998)andSung等(2005)的结果从独立情形推广到了m-NSD随机变量阵列.本文的结论同样推广了Chen等(2008),Hu等(2009),Qiu等(2011)和Wang等(2014)的结果. |
| 关键词: Kolmogorov型指数不等式 完全收敛性 m-NSD随机变量 |
| DOI: |
| 分类号:O211.4 |
| 基金项目:Supported by National Natural Science Foundation of China (71271042; 11361019); Research Project of Guangxi High Institution (YB2014150). |
|
| COMPLETE CONVERGENCE FOR ARRAYS OF ROWWISE M-NSD RANDOM VARIABLES |
|
FENG Feng-xiang1,2, WANG Ding-cheng1, WU Qun-ying2
|
|
1.School of Mathematical Science, University of Electronic Science and Technology of China, Chengdu 611731, China;2.College of Science, Guilin University of Technology, Guilin 541004, China
|
| Abstract: |
| In this article, we study complete convergence theorems for arrays of rowwise m-negatively superadditive-dependent (m-NSD) random variables. By using Kolmogorov-type exponential inequality for m-NSD random variables, we obtain complete convergence theorems for arrays of rowwise m-NSD random variables, which generalize those on complete convergence theorem previously obtained by Hu et al. (1998) and Sung et al. (2005) from independent distributed case to m-NSD arrays. Our results also extend the corresponding results of Chen et al.(2008), Hu et al. (2009), Qiu et al. (2011) and Wang et al. (2014). |
| Key words: Kolmogorov-type exponential inequality complete convergence m-NSD random variables |