|
摘要: |
本文引入两个以de Sitter空间为模型的非齐性坐标来覆盖共形空间Q1m+1.利用球面Sm+1中超曲面的Möbius几何的方法,本文研究了Q1m+1中正则类空超曲面的共形几何.作为其结果,本文对所有具有平行Blaschke张量的正则类空超曲面进行了完全分类. |
关键词: 共形形式 平行Blaschke张量 共形度量 共形第二基本形式 极大超曲面 常数量曲率 |
DOI: |
分类号:O186 |
基金项目:Supported by National Natural Science Foundation of China (11171091; 11371018). |
|
REGULAR SPACE-LIKE HYPERSURFACES IN THE DE SITTER SPACE S1M+1 WITH PARALLEL BLASCHKE TENSORS |
LI Xing-xiao,SONG Hong-ru
|
Abstract: |
In this paper, we introduce two conformal non-homogeneous coordinate systems. Modeled on the de Sitter space S1m+1, we cover the conformal space Q1m+1. The conformal geometry of regular space-like hypersurfaces in Q1m+1 can be treated as in the Möbius geometry of hypersurfaces in the sphere Sm+1. As a result, we give a complete classiflcation of the regular space-like hypersurfaces with parallel Blaschke tensors. |
Key words: conformal form parallel Blaschke tensor conformal metric conformal second fundamental form maximal hypersurfaces constant scalar curvature |