引用本文:
【打印本页】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 1366次   下载 1516 本文二维码信息
码上扫一扫!
分享到: 微信 更多
容有半对称度量联络的广义复空间中子流形上的Chen-Ricci不等式
何国庆
作者单位
何国庆 安徽师范大学数学计算机科学学院, 安徽 芜湖 241000 
摘要:
本文研究了容有半对称度量联络的广义复空间中的子流形上的Chen-Ricci不等式.利用代数技巧,建立了子流形上的Chen-Ricci不等式.这些不等式给出了子流形的外在几何量-关于半对称联络的平均曲率与内在几何量-Ricci曲率及k-Ricci曲率之间的关系,推广了Mihai和Özgür的一些结果.
关键词:  Chen-Ricci不等式  k-Ricci曲率  广义复空间  半对称度量联络
DOI:
分类号:O186.12
基金项目:Supported by the Foundation for Excellent Young Talents of Higher Education of Anhui Province (2011SQRL021ZD).
CHEN-RICCI INEQUALITIES FOR SUBMANIFOLDS OF GENERALIZED COMPLEX SPACE FORMS WITH SEMI-SYMMETRIC METRIC CONNECTIONS
HE Guo-qing
Abstract:
In this paper, we study Chen-Ricci inequalities for submanifolds of generalized complex space forms endowed with a semi-symmetric metric connection. By using algebraic techniques, we establish Chen-Ricci inequalities between the mean curvature associated with a semisymmetric metric connection and certain intrinsic invariants involving the Ricci curvature and k-Ricci curvature of submanifolds, which generalize some of Mihai and Özgür's results.
Key words:  Chen-Ricci inequality  k-Ricci curvature  generalized complex space form  semisymmetric metric connection