引用本文:
【打印本页】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 1387次   下载 1736 本文二维码信息
码上扫一扫!
分享到: 微信 更多
一类Z2对称五次微分系统的中心条件和极限环分支
桑波
作者单位
桑波 聊城大学数学科学学院, 山东 聊城 252059 
摘要:
本文研究了一类Z2对称五次微分系统的中心条件和小振幅极限环分支.通过前6阶焦点量的计算,获得了原点为中心的充要条件,并证明系统从原点分支出的小振幅极限环的个数至多为6.最后通过构造后继函数,给出系统具有6个围绕原点的小振幅极限环的实例.
关键词:  五次系统  焦点量  极限环  后继函数
DOI:
分类号:O175.12
基金项目:数学天元基金资助项目(11226041).
CENTER CONDITIONS AND BIFURCATIONS OF LIMIT CYCLES FOR A CLASS OF QUINTIC DIFFERENTIAL SYSTEMS WITH Z2 SYMMETRY
SANG Bo
Abstract:
In this paper, the center conditions and bifurcations of small amplitude limit cycles for a class of quintic systems with Z2 symmetry are investigated. By the computations of the first six focal quantities, the necessary and sufficient conditions for the origin to be center are derived, and the maximal number of small amplitude limit cycles is proved to be 6. Finally, by constructing displacement function, a concrete example of quintic system is proved to have six small amplitude limit cycles around the origin.
Key words:  quintic system  focal quantity  limit cycle  displacement function