引用本文:
【打印本页】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 1477次   下载 1176 本文二维码信息
码上扫一扫!
分享到: 微信 更多
一类变系数分数阶微分方程的数值解法
李宝凤
作者单位
李宝凤 唐山师范学院数学与信息科学系, 河北 唐山 063000 
摘要:
本文研究了一类变系数分数阶微分方程的数值解法问题. 利用Cheyshev小波推导出的分数阶微分方程的算子矩阵把分数阶微分方程转换为代数方程组. 同时给出了Cheyshev小波基的收敛性和误差估计表达式, 并给出数值算例说明所提方法的精确性和有效性
关键词:  分数阶积分  Chebvshev小波  算子矩阵  分数阶微分方程  block pulse函数
DOI:
分类号:O175.8
基金项目:Supported by the Natural Foundation of Hebei Province(A2012203047) and Natural Science foundation of Tangshan Normal University(2014D09).
A NUMERICAL METHOD FOR FRACTIONAL DIFFERENTIAL EQUATIONS WITH VARIABLE COEFFICIENTS
LI Bao-feng
Abstract:
Here is to study the numerical solution of multi-order fractional differential equa-tions (FDEs) with variable coefficients. We derive the operational matrix of fractional integration based on the Chebyshev wavelets. The operational matrix of fractional integration is utilized to reduce the fractional differential equations to a system of algebraic equations. In addition, the convergence of the Chebyshev wavelet bases and the error estimation expression are presented. A numerical example is provided to demonstrate the accuracy and efficiency of the proposed method.
Key words:  fractional integration  the Chebyshev wavelets  operational matrix  fractional differential equations  block pulse function