引用本文:
【打印本页】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 1528次   下载 1361 本文二维码信息
码上扫一扫!
分享到: 微信 更多
等维Cartan-Hartogs域双全纯映射的特征
冯志明
作者单位
冯志明 乐山师范学院数学与信息科学学院, 四川 乐山 614000 
摘要:
本文考虑了等维Cartan-Hartogs域之间的全纯映射.如果Cartan-Hartogs域ΩBm(μ)不是球,则它上面存在一函数X使得它在ΩBm(μ)的任一全纯自同构作用下不变.通过直接计算得到:如果等维Cartan-Hartogs域间的全纯映射F保持函数X不变,则F必是双全纯映射.由此可得如果Cartan-Hartogs域ΩBm(μ)不是球,ΩBm(μ)的全纯自映射是自同构的充要条件是F保持函数X不变.
关键词:  双全纯映射  有界对称域  Cartan-Hartogs域
DOI:
分类号:O174.56
基金项目:The research was supported by the Scientific Research Fund of SiChuan Provincial Education Department (15ZA0284).
A CHARACTERIZATION OF THE BIHOLOMORPHISMS BETWEEN EQUIDIMENSIONAL CARTAN-HARTOGS DOMAINS
FENG Zhi-ming
Abstract:
The holomorphic mappings F between equidimensional Cartan-Hartogs domains are considered.If a Cartan-Hartogs domain ΩBm(μ) is not the unit ball,then there is a function X on ΩBm(μ) such that any holomorphic automorphism of ΩBm(μ) leaves the function X on ΩBm(μ) invariant.By direct calculations,we obtain that if a holomorphic mapping F between equidimensional Cartan-Hartogs domains leaves the functions X invariant,then F must be a biholomorphism.As a consequence of our result,if a Cartan-Hartogs domain ΩBm(μ) is not the unit ball,then,for any holomorphic self-mapping F on ΩBm(μ),we have that F is a holomorphic automorphism of ΩBm(μ) if and only if F leaves the function X on ΩBm(μ) invariant.
Key words:  biholomorphic mappings  bounded symmetric domains  Cartan-Hartogs domains