| 摘要: |
| 本文研究了具光滑边界的有界域上拟线性椭圆问题的多解性.在Orlicz-Sobolev空间中利用变分及扰动的方法,得到了方程在对称及非对称情况下解的存在性和多解性. |
| 关键词: Orlicz-Sobolev空间 拟线性椭圆方程 扰动方法 对称性 |
| DOI: |
| 分类号:O175.25 |
| 基金项目:The first author is supported by NSFC-Tian Yuan Special Foundation (11226116);Natural Science Foundation of Jiangsu Province of China for Young Scholar (BK2012109);the China Scholarship Council (201208320435);the Fundamental Research Funds for the Central Universities (JUSRP11118);the second author is supported by NSFC (10871096);the third author is supported by Graduate Education Innovation of Jiangsu Province (CXZZ13-0389). |
|
| MULTIPLE SOLUTIONS FOR SYMMETRIC AND NON-SYMMETRIC QUASILINEAR ELLIPTIC EQUATIONS:AN ORLICZ-SOBOLEV SPACE SETTING |
|
YANG Yang1, ZHANG Ji-hui2, SHANG Xu-dong3, SHAO Yi-xin1
|
|
1.School of Science, Jiangnan University, Wuxi 214122, China;2.School of Mathematics Science, Nanjing Normal University, Nanjing 210046, China;3.School of Mathematics, Nanjing Normal University Taizhou College, Taizhou 225300, China
|
| Abstract: |
| In this paper,we study multiplicity of solutions for the quasilinear elliptic problem in a bounded domain with smooth boundary.By using variational and perturbed methods in Orlicz-Sobolev space,we prove the existence of multiple solutions both in symmetric and nonsymmetric case. |
| Key words: Orlicz-Sobolev spaces quasilinear elliptic equations perturbed methods symmetry |