|
摘要: |
本文研究了具光滑边界的有界域上拟线性椭圆问题的多解性.在Orlicz-Sobolev空间中利用变分及扰动的方法,得到了方程在对称及非对称情况下解的存在性和多解性. |
关键词: Orlicz-Sobolev空间 拟线性椭圆方程 扰动方法 对称性 |
DOI: |
分类号:O175.25 |
基金项目:The first author is supported by NSFC-Tian Yuan Special Foundation (11226116);Natural Science Foundation of Jiangsu Province of China for Young Scholar (BK2012109);the China Scholarship Council (201208320435);the Fundamental Research Funds for the Central Universities (JUSRP11118);the second author is supported by NSFC (10871096);the third author is supported by Graduate Education Innovation of Jiangsu Province (CXZZ13-0389). |
|
MULTIPLE SOLUTIONS FOR SYMMETRIC AND NON-SYMMETRIC QUASILINEAR ELLIPTIC EQUATIONS:AN ORLICZ-SOBOLEV SPACE SETTING |
YANG Yang,ZHANG Ji-hui,SHANG Xu-dong,SHAO Yi-xin
|
Abstract: |
In this paper,we study multiplicity of solutions for the quasilinear elliptic problem in a bounded domain with smooth boundary.By using variational and perturbed methods in Orlicz-Sobolev space,we prove the existence of multiple solutions both in symmetric and nonsymmetric case. |
Key words: Orlicz-Sobolev spaces quasilinear elliptic equations perturbed methods symmetry |