| 摘要: | 
	         
			 
		     | 本文引入了拟-*-A(k)算子并研究其谱性质如下:(i)如果T是拟*-A(k)算子,其中0< k ≤ 1,则谱映射定理对T的本质近似点谱成立. (ii)如果T是拟*-A(k)算子,其中0< k ≤ 1,则σjα(T)\{0}=σα(T)\{0}.最后对*-A(k)算子的张量积性质也进行了讨论. | 
	         
			
	         
				| 关键词:  拟-*-A(k) 算子  单值扩展性质  联合近似点谱  张量积 | 
	         
			 
                | DOI: | 
           
            
                | 分类号:O177.2 | 
             
			 
             
                | 基金项目:Supported by the Basic Science and Technological Frontier Project of Henan Province (132300410261). | 
             
           | 
           
                | A NOTE ON QUASI-*-A(K) OPERATORS | 
           
           
			
                | 
				
				ZUO Fei, ZUO Hong-liang, LI Wen
						
				
				 | 
           
           
		   
		   
                | 
				
				College of Math. and Inform. Sci., Henan Normal University, Xinxiang 453007, China
				
				 | 
           
		   
             
                | Abstract: | 
              
			
                | In this note, we introduce quasi-*-A (k) operators and obtain their spectral properties as follows:(i) If T is quasi-*-A (k) for 0 < k ≤ 1, then the spectral mapping theorem holds for the essential approximate point spectrum. (ii) If T is quasi-*-A (k) for 0 < k ≤ 1, then σjα(T)\{0}=σα(T)\{0}. Besides, we consider tensor product of *-A (k) operators. | 
            
	       
                | Key words:  quasi-*-A(k) operators  SVEP  joint approximate point spectrum  tensor product |