引用本文:
【打印本页】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 1162次   下载 1287 本文二维码信息
码上扫一扫!
分享到: 微信 更多
关于拟-*-A(k)算子的注记
左飞,左红亮,李雯
作者单位
左飞 河南师范大学数学与信息科学学院, 河南 新乡 453007 
左红亮 河南师范大学数学与信息科学学院, 河南 新乡 453007 
李雯 河南师范大学数学与信息科学学院, 河南 新乡 453007 
摘要:
本文引入了拟-*-A(k)算子并研究其谱性质如下:(i)如果T是拟*-A(k)算子,其中0< k ≤ 1,则谱映射定理对T的本质近似点谱成立. (ii)如果T是拟*-A(k)算子,其中0< k ≤ 1,则σ(T)\{0}=σα(T)\{0}.最后对*-A(k)算子的张量积性质也进行了讨论.
关键词:  拟-*-A(k) 算子  单值扩展性质  联合近似点谱  张量积
DOI:
分类号:O177.2
基金项目:Supported by the Basic Science and Technological Frontier Project of Henan Province (132300410261).
A NOTE ON QUASI-*-A(K) OPERATORS
ZUO Fei,ZUO Hong-liang,LI Wen
Abstract:
In this note, we introduce quasi-*-A (k) operators and obtain their spectral properties as follows:(i) If T is quasi-*-A (k) for 0 < k ≤ 1, then the spectral mapping theorem holds for the essential approximate point spectrum. (ii) If T is quasi-*-A (k) for 0 < k ≤ 1, then σ(T)\{0}=σα(T)\{0}. Besides, we consider tensor product of *-A (k) operators.
Key words:  quasi-*-A(k) operators  SVEP  joint approximate point spectrum  tensor product