引用本文:
【打印本页】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 1169次   下载 1323 本文二维码信息
码上扫一扫!
分享到: 微信 更多
具非线性非局部边界条件的一类多孔介质方程解的整体存在与爆破
凌征球
作者单位
凌征球 玉林师范学院数学与信息科学学院, 广西玉林 537000 
摘要:
本文研究了具有非线性非局部边界条件的一类退化型多孔介质方程. 利用比较原理和上下解的方法, 获得了方程的解是否在有限时刻爆破或整体存在的准则, 这些结果表明, 权重函数g(x, y)及指数l的大小对于问题解的爆破与否起着关键的作用. 最后研究了爆破解的爆破率.
关键词:  多孔介质方程  非线性非局部边界条件  整体存在  爆破  爆破率
DOI:
分类号:O175.26
基金项目:Supported by National Natural Science Foundation of China (11461076) and Universities and colleges research foundation of Guangxi(ZD2014106).
GLOBAL EXISTENCE AND BLOW-UP FOR A NONLINEAR POROUS MEDIUM EQUATION WITH NONLINEAR NONLOCAL BOUNDARY CONDITION
LING Zheng-qiu
Abstract:
This paper studies a degenerate nonlinear porous medium equation ut = Δum + aupΩuqdx with nonlinear and nonlocal boundary condition u|∂Ω×(0,∞)= ∫Ωg(x, y)ul(y, t)dy. With the help of the comparison principle and super-, sub-solution methods, some criteria on this problem which determine whether the solutions blow up in a finite time or the solutions exist for all time are given. These results show that the global existence and blow-up results depend on the weight function g(x, y) and the size of l. Finally, the blow-up rate of the blow-up solutions is given.
Key words:  porous medium equation  nonlinear nonlocal boundary condition  global exis-tence  blow-up  blow-up rate