引用本文:
【打印本页】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 1193次   下载 1375 本文二维码信息
码上扫一扫!
分享到: 微信 更多
由分数布朗运动驱动的随机微分方程的比较定理及其应用
姜国,李必文
作者单位
姜国 湖北师范学院数学与统计学院, 湖北 黄石 435002 
李必文 湖北师范学院数学与统计学院, 湖北 黄石 435002 
摘要:
本文研究了由分数布朗运动驱动的不同扩散和漂移系数随机微分方程.利用随机微分方程广义样本解的方法,得到了两个比较定理.进一步,给出了他们的应用和一个最优逼近策略.
关键词:  随机微分方程  广义样本解  比较定理  分数布朗运动  最优策略
DOI:
分类号:O211.63
基金项目:Supported by the National Natural Science Foundation of China(11061032); Science and Technology Research Projects of Hubei Provincial Department of Education (Q20132505; Q20122203); the Innovation Team of DDS (T201412).
COMPARISON THEOREM AND ITS APPLICATIONS FOR SDES DRIVEN BY FRACTIONAL BROWNIAN MOTIONS
JIANG Guo,LI Bi-wen
Abstract:
In this article, we study stochastic differential equations (SDEs) with different drift and diffusion coefficients which are driven by fractional Brownian motions. By using the generalized sample solutions of SDEs, two comparison theorems are obtained. moreover, we give their applications and propose an asymptotic optimal strategy.
Key words:  stochastic differential equation  generalized sample solution  comparison theorem  fractional Brownian motion  optimal strategy