| 摘要: |
| 本文研究了Lp球的相关问题.利用对偶混合体积、球面Radon变换和Fourier变换的方法,获得了关于Lp球的几个新不等式和性质,其中一个不等式与著名的最大切片猜想有关. |
| 关键词: 凸体 对偶混合体积 Lp质心体 Lp球 |
| DOI: |
| 分类号:O186.5 |
| 基金项目:Supported by NSFC (11001163);Innovation Program of Shanghai Municipal Education Commission (11YZ11). |
|
| NEW INEQUALITIES AND CHARACTERIZATIONS FOR Lp-BALLS |
|
ZHENG Lv-zhou1, WEI Zheng-li2
|
|
1.College of Mathematics and statistics, Hubei Normal University, Huangshi 435002, China;2.Department of Mathematics, Shanghai University, Shanghai 200444, China
|
| Abstract: |
| In this paper,we research some related problems of Lp-ball and obtain several new characterizations and inequalities for Lp-balls by using dual mixed volumes,spherical Radon transform and Fourier transform.One of the inequalities is related to the famous maximal slice conjecture. |
| Key words: convex body dual mixed volume Lp centroid body Lp-ball |