引用本文:
【打印本页】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 1375次   下载 1434 本文二维码信息
码上扫一扫!
分享到: 微信 更多
对偶平坦和共形平坦的(α,β)-度量
程新跃,张婷,袁敏高
作者单位
程新跃 重庆理工大学数学与统计学院, 重庆 400054 
张婷 重庆理工大学数学与统计学院, 重庆 400054 
袁敏高 重庆理工大学数学与统计学院, 重庆 400054 
摘要:
本文主要研究了对偶平坦和共形平坦的(α,β)-度量.利用对偶平坦和共形平坦与其测地线的关系,得到了局部对偶平坦和共形平坦的Randers度量是Minkowskian度量的结论.进一步,推广到非Randers型的情形,我们证明了局部对偶平坦和共形平坦的非Randers型的(α,β)-度量在附加的条件下一定是Minkowskian度量.
关键词:  (α,β)度量  对偶平坦的Finsler度量  共形平坦的Finsler度量  Minkowskian度量
DOI:
分类号:O186.1
基金项目:Supported by National Natural Science Foundation of China (10971239).
ON DUALLY FLAT AND CONFORMALLY FLAT(α, β)-METRICS
CHENG Xin-yue,ZHANG Ting,YUAN Min-gao
Abstract:
In this paper, from the relation between the sprays of two dually flat and conformally flat (α, β) -metrics, we obtain that locally dually flat and conformally flat Randers metrics are Minkowskian. Further, we extend the result to the non-Randers type and show that the locally dually flat and conformally flat (α, β)-metrics of non-Randers type must be Minkowskian under an extra condition.
Key words:  (α, β)-metric  dually flat Finsler metric  conformally flat Finsler metric, Minkowski metirc