摘要: |
本文研究了r阶二进求导极大算子的有界性.利用Dirichlet核的性质证明了此极大算子在一维和d维情况下都不是从Hardy空间Hp到Hardy空间Hp有界的,其中0<p≤1.推广了文献[5]中的结论. |
关键词: Hardy空间 二进导数 二进积分 |
DOI: |
分类号:O174.2 |
基金项目:Supported by Hubei Province Key Laboratory of Systems Science in Metallurgical Process (Wuhan University of Science and Technology) (C201016); National Natural Science Foundation of Pre-Research Item (2011XG005) |
|
THE BOUNDEDNESS OF r-ORDER MAXIMAL OPERATOR OF DYADIC DERIVATIVE |
XIAO Jun,YU Xiao-hong,ZHANG Chuan-zhou
|
XIAO Jun1,YU Xiao-hong2,ZHANG Chuan-zhou1 (1. College of Science,Wuhan University of Science and Technology,Wuhan 430065,China ) (2. Dept. of Math.,Luoyang Institute of Science and Technology,Luoyang 471023,China )
|
Abstract: |
In this paper, we consider the r-order maximal operator of dyadic derivative. By using Dirichlet kernel property, we prove that the maximal operator is not bounded from the oneor d- dimensional Hardy space Hp to itself for 0 < p ≤ 1, which extend the results in [5]. |
Key words: Hardy space dyadic derivative dyadic integral |