引用本文:
【打印本页】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 4919次   下载 102  
分享到: 微信 更多
r阶二进求导极大算子的有界性
肖俊,俞晓红,张传洲
1. 武汉科技大学理学院,湖北武汉,430065
2. 洛阳理工学院数理部,河南洛阳,471023
摘要:
本文研究了r阶二进求导极大算子的有界性.利用Dirichlet核的性质证明了此极大算子在一维和d维情况下都不是从Hardy空间Hp到Hardy空间Hp有界的,其中0<p≤1.推广了文献[5]中的结论.
关键词:  Hardy空间  二进导数  二进积分
DOI:
分类号:O174.2
基金项目:Supported by Hubei Province Key Laboratory of Systems Science in Metallurgical Process (Wuhan University of Science and Technology) (C201016); National Natural Science Foundation of Pre-Research Item (2011XG005)
THE BOUNDEDNESS OF r-ORDER MAXIMAL OPERATOR OF DYADIC DERIVATIVE
XIAO Jun,YU Xiao-hong,ZHANG Chuan-zhou
XIAO Jun1,YU Xiao-hong2,ZHANG Chuan-zhou1 (1. College of Science,Wuhan University of Science and Technology,Wuhan 430065,China ) (2. Dept. of Math.,Luoyang Institute of Science and Technology,Luoyang 471023,China )
Abstract:
In this paper, we consider the r-order maximal operator of dyadic derivative. By using Dirichlet kernel property, we prove that the maximal operator is not bounded from the oneor d- dimensional Hardy space Hp to itself for 0 < p ≤ 1, which extend the results in [5].
Key words:  Hardy space  dyadic derivative  dyadic integral