引用本文:
【打印本页】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 2213次   下载 66  
分享到: 微信 更多
2维二进求导极大算子的有界性
张学英,俞晓红,张传洲
1. 武汉科技大学理学院,湖北武汉,430065
2. 洛阳理工学院数理部,河南洛阳,471023
摘要:
本文研究了二进求导极大算子的有界性.利用狄利克雷核的重要性质,构造了反例证明此极大算子在一维和二维情况下都不是从Hardy空间Hn到Hardy空间Hp有界的,其中0<p≤1.此结果说明文献[4]中的结论是不正确的.
关键词:  Hardy空间  二进导数  二进积分
DOI:
分类号:O174.2
基金项目:Supported by Hubei Province Key Laboratory of Systems Science in Metal-lurgical Process(Wuhan University of Science and Technology)(C201016); National Natural Science Foundation of Pre-Research Item(2011XG005)
THE BOUNDEDNESS OF TWO-DIMENSIONAL MAXIMAL OPERATOR OF DYADIC DERIVATIVE
ZHANG Xue-ying,YU Xiao-hong,ZHANG Chuan-zhou
ZHANG Xue-ying1,YU Xiao-hong2,ZHANG Chuan-zhou1(1.College of Science,Wuhan University of Science and Technology,Wuhan 430065,China)(2.Dept.of Math.,Luoyang Institute of Science and Technology,Luoyang 471023,China)
Abstract:
In this paper, we consider the maximal operator of dyadic derivative. By using property of Dirichlet kernel, we construct a counter-example to prove that the one- and two-dimensional maximal operators are not bounded from the Hardy space Hp to the Hardy space Hp for 0 < p ≤ 1. These results enrich some known conclusions and point out that the conclusion in[4] is incorrect.
Key words:  Hardy spaces  dyadic derivative  dyadic integral