| 本文已被:浏览 3140次   下载 74次 | 
			 
                  | 
                
			 
			 
                | 
				 
 
				
				 | 
            
           
			
				| 任意信源的一类广义Shannon-McMillan定理 | 				
 
			 
           
			
                | 
				王康康,叶慧,李芳
								
				 | 				
            
		  
           
		   
		   
                
				1. 江苏科技大学数理学院,江苏,镇江,212003 2. 安徽师范大学数学计算机科学学院,安徽,芜湖,241000
				 | 
            
		   
 
		    | 
			
             			 
		     | 摘要: | 
	         
			 
		     | 本文研究了任意信源随机和相对熵密度的强极限定理.利用构造相容分布与非负上鞅的方法,获得了m阶马氏信源的随机Shannon-McMillan定理,将已有的关于离散信源的结果加以推广. | 
	         
			
	         
				| 关键词:  Shannon-McMillan定理  相容分布  任意信源  m阶马氏信源  相对熵密度 | 
	         
			 
                | DOI: | 
           
            
                | 分类号:O211.6 | 
             
			 
             
                | 基金项目:江苏省高校自然科学基础研究项目,江苏省自然科学基础研究项目 | 
             
           | 
           
                | A CLASS OF GENERALIZED SHANNON-MCMILLAN THEOREMS FOR ARBITRARY DISCRETE INFORMATION SOURCE | 
           
           
			
                | 
				
				WANG Kang-kang,YE Hui,LI Fang
						
				
				 | 
           
           
		   
		   
                | 
				
				WANG Kang-kang~1,YE Hui~1,LI Fang~2 (1.Dept.of Math.,Jiangsu University of Science and Technology,Zhenjiang 212003,China) (2.School of Math.and Computer Science,An'hui Normal University,Wuhu 241000,China)
				
				 | 
           
		   
             
                | Abstract: | 
              
			
                | In this article,a class of strong limit theorems for the relative entropy densities of random sum of arbitrary information source is discussed.By constructing the joint distribution and nonnegative super martingales,some Shannon-McMillan theorems for arbitrary information source and mth-order Markov information source are obtained and some known results for the discrete information source are extended. | 
            
	       
                | Key words:  Shannon-McMillan theorem  the compatible distribution  arbitrary information source  relative entropy density  mth-order Markov information source   |