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1 Introduction and main results

Fractional differential equations have been extensively applied in mathematical model-
ing. The theory of fractional differential equations is a hot topic in recent decades. Many
scholars have developed a strong interest in this kind of problem and achieved some excel-
lent results [1-8]. It is well known that left and right fractional differential operators are
widely used in physical phenomena of anomalous diffusion, such as fractional convection
diffusion equation [9-10]. In recent years, the equations containing left and right fractional
differential operators have become a new research field in the theory of fractional differential
equations. For example, Ervin and Roop [11] first proposed a class of steady-state fractional
convection-diffusion equations with variational structure

{
−aD

(
p0D

−β
t + qtD

−β
T

)
Du + b (t) Du + c (t) u = f, 0 ≤ β < 1,

u (0) = u (T ) = 0,

where D is the classical first derivative, 0D
−β
t , tD

−β
T are the left and right Riemann-Liouville

fractional derivatives. The authors constructed a suitable fractional derivative space. By
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using Lax-Milgram theorem, the solution of problem was studied. The following Dirichlet
problems were discussed in [12]

{
d
dt

(
1
2 0D

−β
t (u′ (t)) + 1

2 tD
−β
T (u′ (t))

)
+∇F (t, u (t))=0, 0 ≤ β < 1,

u(0) = u(T ) = 0.

The existence result of the solution was obtained by Mountain pass theorem and the min-
imization principle under the Ambrosetti-Rabinowtiz condition. The following year, the
authors [13] used the critical point theory to further discuss the following problems

{
tD

α
T (0Dα

t u(t)) = ∇F (t, u(t)), a.e. t ∈ [0, T ], 1
2

< α ≤ 1,

u(0) = u(T ) = 0.

Under the Ambrosetti-Rabinowtiz condition, the existence of the weak solution was obtained
by using Mountain pass theorem. In addition, the authors also discussed the regularity of
the weak solution.

In recent decades, impulsive differential equations have been the focus of mathemati-
cians’ research. Impulsive differential equation is an effective method to describe the instan-
taneous change of the state of things, and it can reflect the changing law of things more
deeply and accurately. It has practical significance and application value in many fields
of science and technology, such as signal communication, economic regulation, aerospace
technology, management science, engineering science, chaos theory, information science, life
science and so on. Many scholars at home and abroad have studied this kind of problem.
For example, in [14-15], the authors considered the following fractional impulsive problems





tD
α
T(

C
0 Dα

t u(t))+a(t)u(t)=λf(t, u(t)), t 6= tj , a.e.t∈[0, T],
∆(tD

α−1
T (C

0 Dα
t u))(tj) = µIj(u(tj)), j = 1, 2, · · · , n,

u(0) = u(T ) = 0,

where α ∈ ( 1
2
, 1], λ, µ ∈ (0,+∞), Ij ∈ C(R,R), j = 1, 2, · · · , n. a ∈ C([0, T ]) and there

exist two positive constants a1, a2 such that 0 < a1 ≤ a(t) ≤ a2. In addition,

∆(tDα−1
T (C0 Dα

t u))(tj)= tD
α−1
T (C0 Dα

t u)(t+j )−tD
α−1
T (C0 Dα

t u)(t−j ),

tD
α−1
T (C

0 Dα
t u)(t+j ) = lim

t→t+j

(tD
α−1
T (C

0 Dα
t u)(t)),

tD
α−1
T (C

0 Dα
t u)(t−j ) = lim

t→t−j

(tD
α−1
T (C

0 Dα
t u)(t)).

The main tools used in this paper are variational method and three critical points theorem.
Torres and Nyamoradi [16] explored fractional p-Laplacian problems with impulsive effects





tD
α
T

(
|0Dα

t u(t)|p−2
0D

α
t u(t)

)
+ a(t)|u(t)|p−2

u(t) = f(t, u(t)), t 6= tj , a.e. t ∈ [0, T ],

∆
(

tI
1−α
T

(
|0Dα

t u(tj)|p−2
0D

α
t u(tj)

))
= Ij(u(tj)), j = 1, 2, · · · , n, n ∈ N,

u(0) = u(T ) = 0,
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where α ∈ ( 1
p
, 1], p ∈ (1,∞), 0 = t0 < t1 < t2 < · · · < tn < tn+1 = T, Ij ∈ C(R,R).

The solution of the problem was discussed under the condition of Ambrosetti-Rabinowtiz
by using Mountain pass theorem. On the other hand, the coupled systems of fractional
differential equations have gained importance due to their applications in many fields of
science and engineering. For example, Zhao et al. [17] investigated the following coupled
system of fractional differential equations





tD
α
T (a(t)0Dα

t u(t)) = λfu(t, u(t), v(t)), 0 < t < T,

tD
β
T (b(t)0D

β
t v(t)) = λfv(t, u(t), v(t)), 0 < t < T,

u(0) = u(T ) = 0, v(0) = v(T ) = 0,

where λ > 0, 0 < α, β ≤ 1, a, b ∈ L∞[0, T ] with a0 := es sin f[0,T ]a(t) > 0 and b0 :=
es sin f[0,T ]b(t) > 0. By the variational methods, the existence results were obtained.

Inspired by the above literature, we study the following fractional impulsive coupled
systems





tD
α
T φp(0Dα

t u(t)) + a(t)φp(u(t)) = χfu(t, u(t), v (t)), t 6= tj , a.e. t ∈ [0, T ],

tD
β
T φp(0D

β
t v(t)) + b(t)φp(v(t)) = χfv(t, u(t), v (t)), t 6= t′i, a.e. t ∈ [0, T ],

∆(tD
α−1
T φp(C

0 Dα
t u))(tj) = µIj(u(tj)),∆(tD

β−1
T φp(C

0 Dβ
t v))(t′i) = µSi(v(t′i)),

u(0) = u(T ) = v(0) = v(T ) = 0,

(1.1)

where p > 1, α, β ∈ (1/p, 1], χ > 0, µ ∈ R, φp (x) = |x|p−2
x (x 6= 0) , φp (0) = 0, f :

[0, T ]×R×R→ R is a function such that f(·, u, v) is continuous in [0, T ] for every (u, v) ∈ R2

and f(t, ·, ·) is a C1 function in R2 for any t ∈ [0, T ], and fs denotes the partial derivative
of f with respect to s. Ij , Si ∈ C(R,R), j = 1, 2, · · · ,m, m,∈ N, i = 1, 2, · · · , n, n ∈ N,

a(t), b(t) ∈ C([0, T ],R), T > 0, 0 = t0 < t1 < t2 < · · · < tm < tm+1 = T, 0 = t′0 < t′1 <

· · · < t′n < t′n+1 = T , and

∆(tD
α−1
T φp(C

0 Dα
t u))(tj) = tD

α−1
T φp(C

0 Dα
t u)(t+j )− tD

α−1
T φp(C

0 Dα
t u)(t−j ),

∆(tD
β−1
T φp(C

0 Dβ
t v))(t′i) = tD

β−1
T φp(C

0 Dβ
t v)(t′i

+)− tD
β−1
T φp(C

0 Dβ
t v)(t′i

−),

tD
α−1
T φp(C

0 Dα
t u)(t+j ) = lim

t→t+j

tD
α−1
T φp(C

0 Dα
t u)(t),

tD
α−1
T φp(C

0 Dα
t u)(t−j ) = lim

t→t−j
tD

α−1
T φp(C

0 Dα
t u)(t),

tD
β−1
T φp(C

0 Dβ
t v)(t′i

+) = lim
t→t′i+

tD
β−1
T φp(C

0 Dβ
t v)(t),

tD
β−1
T φp(C

0 Dβ
t v)(t′i

−) = lim
t→t′i−

tD
β−1
T φp(C

0 Dβ
t v)(t).

For ease of reading, here are some additional definitions of fractional order derivatives. Let
n − 1 ≤ γ < n, n ∈ N, then 0D

γ
t u(t) and tD

γ
T u(t) represent the left and right Riemann-

Liouville fractional order derivatives, respectively, in the following form:

0D
γ
t u(t) =

dn

dtn 0I
n−γ
t u =

1
Γ(n− γ)

dn

dtn

∫ t

0

(t− s)n−γ−1
uds,
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tD
γ
T u(t) = (−1)n dn

dtn tI
n−γ
T u =

(−1)n

Γ(n− γ)
dn

dtn

∫ T

t

(s− t)n−γ−1
uds.

C
0 Dγ

t u(t) represents the left Caputo fractional order derivative, in the following form:

C
0 Dγ

t u(t) = 0I
n−γ
t

dnu(t)
dtn

=
1

Γ(n− γ)

∫ t

0

(t− s)n−γ−1
u(n)(s)ds.

If α = β = 1, p = 2, a(t) = b(t) = 1, χ = µ = 1, then the above fractional coupled systems
with impulsive effects are reduced to a famous second order impulsive coupled systems





ü(t)+u(t) = fu(t, u(t), v (t)), t 6= tj , a.e. t ∈ [0, T ],
v̈(t)+v(t) = fv(t, u(t), v (t)), t 6= t′i, a.e. t ∈ [0, T ],
∆(u̇(tj)) = Ij(u(tj)), j = 1, 2, · · · ,m,

∆(v̇(t′i)) = Si(v(t′i)), i = 1, 2, · · · , n,

u(0) = u(T ) = v(0) = v(T ) = 0, a.e. t ∈ [0, T ].

This paper studies a class of fractional impulsive coupled systems with p-Laplacian operator.
Under the condition that the nonlinear term satisfies a new class of conditions and the
impulse function satisfies a sub-linear condition, the existence of at least three weak solutions
for the coupled system is obtained by using the three critical points theorem. In literatures
[14-16], the authors only study the existence of solutions for boundary value problems of
fractional differential equations with impulsive effects by using the critical point theory, while
this paper studies the coupled systems of fractional differential equations with impulsive
effects. To some extent, it generalizes the existing results of [14-16]. At the same time,
this paper requires essinft∈[0,T ]a(t) > −λ1, λ1 > 0, which weakens the relevant condition
0 < a1 ≤ a(t) ≤ a2 in [14-15], thereby improving the existing results in [14-15].

2 Preliminaries

For basic concepts and lemmas of fractional derivatives and integrals, please see [18-19].
Here, we give some important lemmas and definitions.

Proposition 2.1 ([18]) Let u be a function defined on [a, b], 0 < a < b. If c
aD

γ
t u(t),

c
tD

γ
b u(t), aD

γ
t u(t) and tD

γ
b u(t) all exist, then

c
aD

γ
t u(t)=aD

γ
t u(t)−

n−1∑
j=0

uj (a)
Γ (j − γ + 1)

(t− a)j−γ
, t ∈ [a, b] ,

c
tD

γ
b u(t)= tD

γ
b u(t)−

n−1∑
j=0

uj (b)
Γ (j − γ + 1)

(b− t)j−γ
, t ∈ [a, b] ,

where n ∈ N, n − 1 < γ < n, Γ (j − γ + 1) is the Euler gamma function, in the following
form:

Γ (j − γ + 1) =
∫ ∞

0

tj−γe−tdt, tj−γ = e(j−γ) log(t).
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Definition 2.1 ([19]) Let 0 < α ≤ 1, 1 < p < ∞. Define the fractional derivative space
Eα,p as follows

Eα,p = {u ∈ Lp ([0, T ] ,R) |0Dα
t u ∈ Lp ([0, T ] ,R)} ,

with the norm
‖u‖Eα,p = (‖u‖p

Lp + ‖0D
α
t u‖p

Lp)
1
p , (2.1)

where ‖u‖Lp = (
∫ T

0
|u (t)|pdt)1/p is the norm of Lp ([0, T ] ,R). Eα,p

0 is defined by closure of
C∞

0 ([0, T ] ,R) with respect to the norm ‖u‖Eα,p .
Remark 2.1 For any u ∈ Eα,p

0 , according to Proposition 2.1, when 0 < α <

1 and the boundary conditions u(0) = u(T ) = 0 are satisfied, we can get c
0D

α
t u(t) =

0D
α
t u(t), c

tD
α
T u(t) = tD

α
T u(t), t ∈ [0, T ].

Lemma 2.1 ([19]) Let 0 < α ≤ 1, 1 < p < ∞. The fractional derivative space Eα,p
0

with respect to the norm ‖u‖Eα,p is a reflexive and separable Banach space.
Lemma 2.2 ([13]) Let 0 < α ≤ 1, 1 < p < ∞. If u ∈ Eα,p

0 , then

‖u‖Lp ≤ T α

Γ (α + 1)
‖0D

α
t u‖Lp . (2.2)

If α > 1/p, then
‖u‖∞ ≤ C∞‖0D

α
t u‖Lp , (2.3)

where ‖u‖∞ = maxt∈[0,T ] |u (t)| is the norm of C ([0, T ] ,R), and

C∞ =
T α− 1

p

Γ (α) (αp∗ − p∗ + 1)
1
p∗

> 0, p∗ =
p

p− 1
> 1.

According to (2.2), we can consider in Eα,p
0 the following norm

‖u‖Eα,p = (
∫ T

0

|0Dα
t u (t)|pdt)

1
p = ‖0D

α
t u‖Lp , ∀u ∈ Eα,p

0 . (2.4)

Lemma 2.3 ([13]) Assume that 1/p < α ≤ 1, 1 < p < ∞, then Eα,p
0 is compactly

embedded in C ([0, T ] ,R).
Lemma 2.4 ([13]) Let 1/p < α ≤ 1, 1 < p < ∞. Assume that the sequence {uk}

converges weakly to u in Eα,p
0 , i.e., uk ⇀ u, then uk → u in C ([0, T ] ,R), i.e., ‖uk − u‖∞ →

0, k →∞.

To investigate problem (1.1), this article defines a new norm on the space Eα,p
0 , as

follows

‖u‖α = (
∫ T

0

|0Dα
t u (t)|pdt +

∫ T

0

a(t)|u (t)|pdt)
1
p . (2.5)

Lemma 2.5 ([16]) If essinft∈[0,T ]a(t) > −λ1, where λ1 = inf
u∈Eα,p

0 \{0}

∫ T
0 |0Dα

t u(t)|pdt∫ T
0 |u(t)|pdt

> 0.

Then the norm ‖u‖α is equivalent to ‖u‖Eα,p , that is, there exist two positive constants Λ1,
Λ2, such that Λ1‖u‖Eα,p ≤ ‖u‖α ≤ Λ2‖u‖Eα,p , ∀u ∈ Eα,p

0 , where ‖u‖Eα,p is defined in (2.4).
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Lemma 2.6 Let 0 < α ≤ 1, 1 < p < ∞. By Lemmas 2.2, 2.5 and (2.4), for u ∈ Eα,p
0 ,

one has
‖u‖Lp ≤ T α

Γ (α + 1)
‖u‖Eα,p ≤ Λp‖u‖α, (2.6)

where Λp = T α

Λ1Γ(α+1)
. If α > 1/p, then

‖u‖∞ ≤ T α− 1
p

Γ (α) (αp∗ − p∗ + 1)
1
p∗
‖u‖Eα,p ≤ Λ∞‖u‖α, (2.7)

where ‖u‖∞ = maxt∈[0,T ] |u (t)| is the norm of C ([0, T ] ,R), and

Λ∞ =
T α− 1

p

Λ1Γ (α) (αp∗ − p∗ + 1)
1
p∗

, p∗ =
p

p− 1
> 1.

Define a new norm on the space Eβ,p
0 , as follows

‖v‖β = (
∫ T

0

∣∣
0D

β
t v (t)

∣∣pdt +
∫ T

0

b(t)|v (t)|pdt)
1
p , (2.8)

where the definition of Eβ,p
0 is similar to that of Eα,p

0 , see Definition 2.1. Similar to Lemma
2.5, the relationship between ‖v‖β and ‖v‖Eβ,p is given below, where the definition of ‖v‖Eβ,p

is similar to the definition of ‖u‖Eα,p , as shown in (2.4).

Lemma 2.7 If essinft∈[0,T ]b(t) > −λ1
′, where λ1

′ = inf
v∈Eβ,p

0 \{0}

∫ T
0 |0Dβ

t v(t)|pdt∫ T
0 |v(t)|pdt

> 0, then

the norm ‖v‖β is equivalent to ‖v‖Eβ,p , in other words, there exist Λ1
′,Λ2

′ > 0, such that
Λ1

′‖v‖Eβ,p ≤ ‖v‖β ≤ Λ2
′‖v‖Eβ,p , ∀v ∈ Eβ,p

0 . So

‖v‖Lp ≤ T β

Γ (β + 1)
‖v‖Eβ,p ≤ Λp

′‖v‖β, (2.9)

‖v‖∞ ≤ T β− 1
p

Γ (β) (βp∗ − p∗ + 1)
1

p∗
‖v‖Eβ,p ≤ Λ∞′‖v‖β, (2.10)

where Λp
′ = T β

Λ1
′Γ(β+1)

, Λ∞′ = T
β− 1

p

Λ1
′Γ(β)(βp∗−p∗+1)

1
p∗

, p∗ = p
p−1

> 1.

Define the fractional derivative space

X = Eα,p
0 × Eβ,p

0 , (2.11)

whose norm is as follows

‖(u, v)‖X = ‖u‖α + ‖v‖β, ∀ (u, v) ∈ X. (2.12)

From Lemma 2.1, we can see that X is a separable reflexive Banach space. According to
Lemma 2.3, X compactly embedded in C ([0, T ] ,R)×C ([0, T ] ,R). By (2.7), (2.10), we have

‖(u, v)‖∞ = max
t∈[0,T ]

|u(t)|+ max
t∈[0,T ]

|v(t)| ≤ Λ∞‖u‖α + Λ∞′‖v‖β ≤ M‖(u, v)‖X , (2.13)
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where M = max
{
Λ∞,Λ∞′

}
.

Lemma 2.8 ([18]) (Integration by parts) Let α > 0, p ≥ 1, q ≥ 1, 1/p + 1/q < 1 + α

or p 6= 1, q 6= 1, 1/p + 1/q = 1 + α. If the function u ∈ Lp ([a, b] ,R) , v ∈ Lq ([a, b] ,R), then

∫ b

a

[
aD

−α
t u (t)

]
v (t) dt =

∫ b

a

u (t)
[
tD

−α
b v (t)

]
dt. (2.14)

By multiplying the first equation in problem (1.1) by any x ∈ Eα,p
0 and integrating on

[0, T ], we can obtain

∫ T

0
tD

α
T φp(0Dα

t u(t))x(t)dt +
∫ T

0

a(t)φp(u(t))x(t)dt− χ

∫ T

0

fu(t, u(t), v(t))x(t)dt = 0.

By Lemma 2.8, one has

∫ T

0
tD

α
T φp(0Dα

t u(t))x(t)dt = −
n∑

j=0

∫ tj+1

tj

x(t)d[tDα−1
T φp(0Dα

t u(t))]

=−
n∑

j=0

tD
α−1
T φp(0Dα

t u(t))x(t)|tj+1
tj

+
n∑

j=0

∫ tj+1

tj

φp(0Dα
t u(t))0D

α
t x(t)dt

=
n∑

j=1

[tDα−1
T φp(0Dα

t u(t+j ))x(tj)−tD
α−1
T φp(0Dα

t u(t−j ))x(tj)] +
∫ T

0

φp(0Dα
t u(t))0D

α
t x(t)dt

=µ

n∑
j=1

Ij(u(tj))x(tj) +
∫ T

0

φp(0Dα
t u(t))0D

α
t x(t)dt.

Thus, we get the definition of the weak solution of problem (1.1).
Definition 2.2 Let (u, v) ∈ X be a weak solution of problem (1.1), if

∫ T

0

(
φp(0D

α
t u(t))0D

α
t x(t) + a(t)φp(u(t))x(t)

)
dt +

∫ T

0

(
φp(0D

β
t v(t))0D

β
t y(t) + b(t)φp(v(t))y(t)

)
dt

+ µ(
m∑

j=1

Ij(u(tj))x(tj) +
n∑

i=1

Si(v(t′i))y(t′i))− χ

∫ T

0

(fu(t, u(t), v(t))x(t)+fv(t, u(t), v(t))y(t))dt=0

holds for any ∀(x, y) ∈ X.

Define functional ϕ : X → R as follows

ϕ(u, v) =
1
p

(‖u‖p
α + ‖v‖p

β

)
+ µ(

m∑
j=1

∫ u(tj)

0

Ij(s)ds

+
n∑

i=1

∫ v(t′i)

0

Si(z)dz)−χ

∫ T

0

f(t, u(t), v (t))dt, ∀ (u, v) ∈ X.

(2.15)

By the continuity of functions Ij and Si and f(t, ·, ·) is a C1 function in R2 for any t ∈ [0, T ],
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it is easy to prove ϕ ∈ C1(X,R). In addition, for ∀ (x, y) ∈ X, one has

ϕ′(u, v) (x, y) =
∫ T

0

(φp(0Dα
t u(t))0D

α
t x(t) + a(t)φp(u(t))x(t)) dt

+
∫ T

0

(
φp(0D

β
t v(t))0D

β
t y(t) + b(t)φp(v(t))y(t)

)
dt

+ µ(
m∑

j=1

Ij(u(tj))x(tj) +
n∑

i=1

Si(v(t′i))y(t′i))

− χ

∫ T

0

(fu(t, u(t), v(t))x(t) + fv(t, u(t), v(t))y(t))dt.

(2.16)

Therefore, the critical point of functional ϕ corresponds to the weak solution of (1.1).

3 Main result

The three critical point theorems used in this article are first introduced.
Lemma 3.1 ([20]) Let X be a reflexive real Banach space, Φ : X → R be a sequentially

weakly lower semi continuous, coercive and continuously Gâteaux differentiable functional
whose Gâteaux derivative admits a continuous inverse on X∗, Ψ : X → R be a continuously
Gâteaux differentiable functional whose Gâteaux derivative is compact, such that

inf
x∈X

Φ(x) = Φ (0) = Ψ (0) = 0.

Assume that there exist r > 0, x ∈ X with r < Φ(x) such that
(i) sup {Ψ(x) : Φ (x) ≤ r} < rΨ(x)

Φ(x)
,

(ii) for each λ ∈ Λr =
(

Φ(x)
Ψ(x)

, r
sup{Ψ(x):Φ(x)≤r}

)
, the functional Φ− λΨ is coercive.

Then, for each λ ∈ Λr, the functional Φ−λΨ has at least three distinct critical points in X.
Next, we first consider three solutions of problem (1.1) in the case of parameter µ ≥ 0,

and get the following results.
Theorem 3.1 Let f : [0, T ]×R×R→ R is a function such that f(·, u, v) is continuous

in [0, T ] for every (u, v) ∈ R2 and f(t, ·, ·) is a C1 function in R2 for any t ∈ [0, T ], and
f(t, 0, 0) = 0, ∀t ∈ [0, T ]. Assume that all of the following conditions are true

(H1) a(t), b(t) ∈ C([0, T ],R), and essinft∈[0,T ]a(t) > −λ1, essinft∈[0,T ]b(t) > −λ1
′,

where λ1, λ1
′ are defined in Lemmas 2.5, 2.7, respectively;

(H2) There exist L, Li, Dj > 0, 0 < q ≤ p, 0 < dj < p, 0 < li < p, j = 1, 2, · · · ,m,
i = 1, 2, · · · , n, so that for ∀ (t, u, v) ∈ [0, T ]× R2, we have

f (t, u, v) ≤ L (1 + |u|q + |v|q) , (3.1)

−Jj (u) ≤ Dj

(
1 + |u|dj

)
,−Wi (v) ≤ Li

(
1 + |v|li

)
, (3.2)

where Jj(u) =
∫ u

0
Ij(t)dt, Wi (v) =

∫ v

0
Si(t)dt;
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(H3) There are r > 0, ω = (ω1, ω2) ∈ X, such that ‖ω1‖p
α + ‖ω2‖p

β > pr,

∫ T

0

f(t, ω1(t), ω2(t))dt > 0,

m∑
j=1

Jj(ω1(tj)) > 0,

n∑
i=1

Wi (ω2(t′i)) > 0

and the following inequality holds:

Bl :=
‖ω1‖p

α + ‖ω2‖p
β

p
∫ T

0
f(t, ω1(t), ω2(t))dt

< Br :=
r∫ T

0
sup

(u,v)∈Ω(Mpr)

f (t, u, v) dt
, (3.3)

where the definition of ‖·‖α, ‖·‖β, X and M are shown in (2.5), (2.8), (2.11), (2.13) and

Ω(Mpr) =
{

(u, v) ∈ R2 :
1
p

(|u|p + |v|p) ≤ Mpr

}
.

Then, for every χ ∈ ΛB = (Bl, Br) , there exists

γ :=min





r − χ
∫ T

0
sup

(u,v)∈Ω(Mpr)

f (t, u, v) dt

max
(u,v)∈Ω(Mpr)

(
m∑

j=1

(−Jj(u)) +
n∑

i=1

(−Wi (v))
) ,

χp
∫ T

0
f(t, ω1(t), ω2(t))dt− (‖ω1‖p

α + ‖ω2‖p
β

)

p

(
m∑

j=1

Jj(ω1(tj)) +
n∑

i=1

Wi (ω2(t′i))
)





,

so that for every µ ∈ [0, γ), (1.1) has at least three weak solutions.
Proof Define the functionals Φ : X → R and Ψ : X → R as below:

Φ (u, v) =
1
p

(‖u‖p
α + ‖v‖p

β

)
, (3.4)

Ψ (u, v) =
∫ T

0

f(t, u(t), v (t))dt− µ

χ

(
m∑

j=1

Jj(u(tj)) +
n∑

i=1

(Wi (v(t′i)))

)
, (3.5)

then ϕ(u, v) = Φ (u, v)− χΨ(u, v). Through the simple calculation, we can gain

inf
(u,v)∈X

Φ(u, v) = Φ (0, 0) = 0,

Ψ(0, 0)=
∫ T

0

f(t, 0, 0)dt−µ

χ

(
m∑

j=1

Jj(0)+
n∑

i=1

Wi (0)

)
=0.

Furthermore, Φ and Ψ are continuous Gâteaux differential and for ∀ (x, y) ∈ X, one has

Φ′(u, v) (x, y) =
∫ T

0

(φp(0Dα
t u(t))0D

α
t x(t) + a(t)φp(u(t))x(t)) dt

+
∫ T

0

(
φp(0D

β
t v(t))0D

β
t y(t) + b(t)φp(v(t))y(t)

)
dt,

(3.6)
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Ψ′(u, v) (x, y) =
∫ T

0

(fu(t, u(t), v(t))x(t) + fv(t, u(t), v(t))y(t))dt

− µ

χ

(
m∑

j=1

Ij(u(tj))x(tj) +
n∑

i=1

Si(v(t′i))y(t′i)

)
.

(3.7)

In addition, Φ′ : X → X∗ is continuous. Next, we prove that Ψ′ : X → X∗ is continuous
compact. Assuming that {(un, vn)} ⊂ X, then there exists (u, v) ∈ X, such that (un, vn) ⇀

(u, v), n → +∞, so (un, vn) → (u, v) on [0, T ]. Because f(t, ·, ·) is a C1 function in R2 for
any t ∈ [0, T ], so f is continuous in R2 for any t ∈ [0, T ]. Thus f (t, un, vn) → f (t, u, v)
as n → +∞. Since Ij , Si ∈ C(R,R), Ij(un(tj)) → Ij(u(tj)), Si(vn(t′i)) → Si(v(t′i)) as
n → +∞. By Lebesgue control convergence theorem, we can get that Ψ′(un, vn) → Ψ′ (u, v),
n → +∞. Thus, Ψ′ is strongly continuous. From Proposition 26.2 in [21], Ψ′ is compact.
Thus, Φ : X → R is weakly semi-continuous, coercive and Φ′ has a continuous inverse
operator on X∗.

The following is to verify the condition (i) in Lemma 3.1. Choose (u0, v0) = (0, 0),
(u1, v1) = (ω1, ω2). If (ξ, η) ∈ X satisfies Φ (ξ, η) = 1

p

(‖ξ‖p
α + ‖η‖p

β

) ≤ r, then, by (2.7),

(2.10), we have Φ (ξ, η) ≥ 1
p

(
1

Λp
∞
‖ξ‖p

∞ + 1
Λ′∞p ‖η‖p

∞

)
, and

{(ξ, η) ∈ X : Φ (ξ, η) ≤ r} ⊆
{

(ξ, η) ∈ X :
1
p

(
1

Λp
∞
‖ξ‖p

∞ +
1

Λ′∞p ‖η‖p
∞

)
≤ r

}

⊆
{

(ξ, η) ∈ X :
1
p

(‖ξ‖p
∞ + ‖η‖p

∞) ≤ Mpr

}
.

Thus, by χ > 0, µ ≥ 0, we get

sup {Ψ(ξ, η) : Φ (ξ, η) ≤ r}

=sup
{∫ T

0

f(t, ξ(t), η (t))dt−µ

χ

(
m∑

j=1

Jj(ξ(tj))+
n∑

i=1

(Wi (η(t′i)))

)
: Φ (ξ, η) ≤ r

}

≤
∫ T

0

sup
(ξ,η)∈Ω(Mpr)

f (t, ξ, η) dt +
µ

χ
max

(ξ,η)∈Ω(Mpr)

(
m∑

j=1

(−Jj(ξ)) +
n∑

i=1

(−Wi (η))

)
.

If max
(ξ,η)∈Ω(Mpr)

(
m∑

j=1

(−Jj(ξ)) +
n∑

i=1

(−Wi (η))
)

= 0, by χ < Br, we obtain

sup {Ψ(ξ, η) : Φ (ξ, η) ≤ r} <
r

χ
. (3.8)

If max
(ξ,η)∈Ω(Mpr)

(
m∑

j=1

(−Jj(ξ)) +
n∑

i=1

(−Wi (η))
)

> 0, (3.8) is also correct for µ ∈ [0, γ). Besides,
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for µ < γ, we have

Ψ (ω1, ω2) =
∫ T

0

f(t, ω1(t), ω2(t))dt− µ

χ

(
m∑

j=1

Jj(ω1(tj)) +
n∑

i=1

Wi (ω2(t′i))

)

>

∫ T

0

f(t, ω1(t), ω2(t))dt− χp
∫ T

0
f(t, ω1(t), ω2(t))dt− (‖ω1‖p

α + ‖ω2‖p
β

)

p

(
m∑

j=1

Jj(ω1(tj)) +
n∑

i=1

Wi (ω2(t′i))
)

× 1
χ

(
m∑

j=1

Jj(ω1(tj)) +
n∑

i=1

Wi (ω2(t′i))

)

>

∫ T

0

f(t, ω1(t), ω2(t))dt−
∫ T

0

f(t, ω1(t), ω2(t))dt +

(‖ω1‖p
α + ‖ω2‖p

β

)

χp

>
Φ(ω1, ω2)

χ
.

(3.9)

Combining (3.8) and (3.9), we obtain Ψ(ω1,ω2)
Φ(ω1,ω2)

> 1
χ

> sup{Ψ(ξ,η):Φ(ξ,η)≤r}
r

, which implies the
condition (i) of Lemma 3.1 holds.

Last, we will verify that for any ∀χ ∈ ΛB, the functional Φ − χΨ is coercive. For
∀(ξ, η) ∈ X, by (2.7), (2.10), (2.13) and (H2), one has

∫ T

0

f (t, ξ (t) , η (t))dt ≤ L

∫ T

0

(1 + |ξ|q + |η|q)dt ≤ LT + LT ‖ξ‖q
∞ + LT ‖η‖q

∞

≤LT + LTΛq
∞ ‖ξ‖q

α + LTΛ′∞
q ‖η‖q

β ≤ LT + LTM q
(‖ξ‖q

α + ‖η‖q
β

) (3.10)

and

−Jj (ξ(tj)) ≤ Dj

(
1 + |ξ(tj)|dj

)
≤ Dj

(
1 + ‖ξ‖dj

∞

)
≤ Dj

(
1 + Λdj

∞ ‖ξ‖dj

α

)
. (3.11)

So
m∑

j=1

(−Jj(ξ(tj))) ≤
m∑

j=1

Dj

(
1 + Λdj

∞ ‖ξ‖dj

α

)
. (3.12)

Similarly, we can get

n∑
i=1

(−Wi (η(t′i))) ≤
n∑

i=1

Li

(
1 + Λ′∞

li ‖η‖li
β

)
. (3.13)

Thus, for (ξ, η) ∈ X, since µ
χ
≥ 0, by (3.10), (3.12), (3.13), we have

Φ (ξ, η)− χΨ(ξ, η) ≥1
p

(‖ξ‖p
α + ‖η‖p

β

)− χLT − χLTM q
(‖ξ‖q

α + ‖η‖q
β

)

−µ

(
m∑

j=1

Dj

(
1+Λdj

∞ ‖ξ‖dj

α

)
+

n∑
i=1

Li

(
1+Λ′∞

li ‖η‖li
β

))
.
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If 0 < q, dj , li < p, for χ > 0, one has lim
‖(ξ,η)‖X→+∞

(Φ (ξ, η)− χΨ(ξ, η)) = +∞. Obviously,

the functional Φ− χΨ is coercive. If q = p, then

Φ (ξ, η)− χΨ(ξ, η) ≥
(

1
p
− χLTMp

)(‖ξ‖p
α + ‖η‖p

β

)− χLT

−µ

(
m∑

j=1

Dj

(
1+Λdj

∞ ‖ξ‖dj

α

)
+

n∑
i=1

Li

(
1 + Λ′∞

li ‖η‖li
β

))
.

Choose L <

∫ T
0 sup

(ξ,η)∈Ω(Mpr)
f(t,ξ,η)dt

prTMp . For χ < Br, one has 1
p
−χLTMp > 0. If 0 < dj , li < p, for

∀χ ∈ ΛB, one has lim
‖(ξ,η)‖X→+∞

(Φ (ξ, η)− χΨ(ξ, η)) = +∞. Obviously, the functional Φ−χΨ

is coercive. Therefore, the conditions in Lemma 3.1 are all true. By Lemma 3.1, we get that,
for each χ ∈ ΛB, the functional ϕ = Φ− χΨ has at least three different critical points in X.

Remark 3.1 The assumption (H2) studies both 0 < q < p and q = p. Obviously when
p = 2, the assumption (H2) contains the condition 0 < q < 2 in [14-15]. In addition, the
assumption (H1) allows a(t) can have a negative lower bound, satisfying essinft∈[0,T ]a(t) >

−λ1, where λ1 = inf
u∈Eα,p

0 \{0}

∫ T
0 |0Dα

t u(t)|pdt∫ T
0 |u(t)|pdt

> 0, but a(t) in [14-15] has a positive lower bound,

satisfying 0 < a1 ≤ a(t) ≤ a2. Thus, our conclusions extend the existing results.
In Theorem 3.1, we consider the case of the parameter µ ≥ 0, and we will consider the

three solutions of problem (1.1) in the case of the parameter µ < 0, and get the following
result.

Theorem 3.2 Let f : [0, T ]×R×R→ R is a function such that f(·, u, v) is continuous
in [0, T ] for every (u, v) ∈ R2 and f(t, ·, ·) is a C1 function in R2 for any t ∈ [0, T ], and
f(t, 0, 0) = 0, ∀t ∈ [0, T ]. Assume that the condition (H1) and the following conditions hold

(H4) There exist L, Li, Dj > 0, 0 < q ≤ p, 0 < dj < p, 0 < li < p, j = 1, 2, · · · ,m,
i = 1, 2, · · · , n so that for ∀ (t, ξ, η) ∈ [0, T ]× R2, we have

f (t, ξ, η) ≤ L (1 + |ξ|q + |η|q) , Jj (ξ) ≤ Dj

(
1 + |ξ|dj

)
,Wi (η) ≤ Li

(
1 + |η|li

)
;

(H5) There are r > 0, ω = (ω1, ω2) ∈ X, such that ‖ω1‖p
α + ‖ω2‖p

β > pr,
∫ T

0

f(t, ω1(t), ω2(t))dt > 0,

m∑
j=1

Jj(ω1(tj)) < 0,

n∑
i=1

Wi (ω2(t′i)) < 0

and (3.3) holds. Then, for every χ ∈ ΛB = (Bl, Br) , there exists

γ∗ :=max





χ
∫ T

0
sup

(ξ,η)∈Ω(Mpr)

f (t, ξ, η) dt− r

max
(ξ,η)∈Ω(Mpr)

(
m∑

j=1

Jj(ξ) +
n∑

i=1

Wi (η)
) ,

χp
∫ T

0
f(t, ω1(t), ω2(t))dt− (‖ω1‖p

α + ‖ω2‖p
β

)

p

(
m∑

j=1

Jj(ω1(tj)) +
n∑

i=1

Wi (ω2(t′i))
)





,
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so that for every µ ∈ (γ∗, 0], (1.1) has at least three weak solutions.
Proof The verification process is analogue to Theorem 3.1, which is omitted here.
Remark 3.2 The assumption (H4) studies both 0 < q < p and q = p. Obviously when

p = 2, the assumption (H4) contains the condition 0 < q < 2 in [14-15]. In addition, the
assumption (H1) allows a(t) can have a negative lower bound, satisfying essinft∈[0,T ]a(t) >

−λ1, λ1 > 0, but a(t) in [14-15] has a positive lower bound, satisfying 0 < a1 ≤ a(t) ≤ a2.
Thus, our conclusions extend the existing results.

This method is also applicable to fractional impulsive equations, such as the following
impulsive Dirichlet problems




tD
α
T φp(0Dα

t u(t)) + a(t)φp(u(t)) = χf(t, u(t)), t 6= tj , a.e. t ∈ [0, T ],

∆(tD
α−1
T φp(C

0 Dα
t u))(tj) = µIj(u(tj)), j = 1, 2, · · · , n, n ∈ N,

u(0) = u(T ) = 0,

(3.14)

where p > 1, α ∈ (1/p, 1], χ > 0, µ ∈ R, a(t) ∈ C([0, T ],R), f ∈ C([0, T ] × R,R), T > 0,

0 = t0 < t1 < t2 < · · · < tn < tn+1 = T, Ij ∈ C(R,R), and

∆(tD
α−1
T φp(C

0 Dα
t u))(tj) = tD

α−1
T φp(C

0 Dα
t u)(t+j )− tD

α−1
T φp(C

0 Dα
t u)(t−j ),

tD
α−1
T φp(C

0 Dα
t u)(t+j ) = lim

t→t+j

tD
α−1
T φp(C

0 Dα
t u)(t),

tD
α−1
T φp(C

0 Dα
t u)(t−j ) = lim

t→t−j
tD

α−1
T φp(C

0 Dα
t u)(t).

In the case of parameter µ ≥ 0, the following result is obtained.
Corollary 3.1 Let f : [0, T ] × R → R and Ij : R → R, j = 1, 2, · · · , n be continuous

functions. Assume that all of the following conditions are true
(G1) a(t) ∈ C([0, T ],R) and essinft∈[0,T ]a(t) > −λ1, where λ1 is defined in Lemma 2.5;
(G2) There exist L,L1, · · · , Ln > 0, 0 < β ≤ p, 0 < dj < p, j = 1, · · · , n, so that for

∀ (t, x) ∈ [0, T ]× R, we have

F (t, x) ≤ L
(
1 + |x|β

)
,−Jj (x) ≤ Lj

(
1 + |x|dj

)
,

where F (t, u) =
∫ u

0
f(t, s)ds, Jj(u) =

∫ u

0
Ij(t)dt.

Suppose that there are r > 0, ω ∈ Eα,p
0 , such that 1

p
‖ω‖p

α > r,
∫ T

0
F (t, ω(t))dt >

0,
n∑

j=1

Jj(ω(tj)) > 0, and

Al :=
1
p
‖ω‖p

α∫ T

0
F (t, ω(t))dt

< Ar :=
r∫ T

0
max

|x|≤Λ∞(pr)1/p
F (t, x) dt

. (3.15)

Then, for every χ ∈ Λr = (Al, Ar), there exists

γ := min





r − χ
∫ T

0
max

|x|≤Λ∞(pr)1/p
F (t, x) dt

max
|x|≤Λ∞(pr)

1
p

n∑
j=1

(−Jj(x))
,
χ

∫ T

0
F (t, ω)dt− 1

p
‖ω‖α

p

n∑
j=1

Jj(ω(tj))
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so that for ∀µ ∈ [0, γ), (3.14) has at least three weak solutions in Eα,p
0 .

When the parameter µ < 0, there is another conclusion, specifically as follows:
Corollary 3.2 Let f : [0, T ]× R→ R and Ij : R→ R, j = 1, 2, · · · , n be continuous.

Assuming (G1) and the following conditions are met.
(G3) There are L,L1, · · · , Ln > 0, 0 < β ≤ p, 0 < dj < p, j = 1, · · · , n, so that for

∀ (t, x) ∈ [0, T ]×R, we have F (t, x) ≤ L
(
1 + |x|β

)
, Jj (x) ≤ Lj

(
1 + |x|dj

)
. Suppose there

is r > 0, ω ∈ Eα,p
0 , so that 1

p
‖ω‖p

α > r,
∫ T

0
F (t, ω(t))dt > 0,

n∑
j=1

Jj(ω(tj)) < 0 and (3.15)

holds. Then, for every χ ∈ Λr = (Al, Ar), there exists

γ∗ := max





χ
∫ T

0
max

|x|≤Λ∞(pr)1/p
F (t, x) dt− r

max
|x|≤Λ∞(pr)

1
p

n∑
j=1

Jj(x)
,
χ

∫ T

0
F (t, ω)dt− 1

p
‖ω‖α

p

n∑
j=1

Jj(ω(tj))





so that for every µ ∈ (γ∗, 0], (3.14) has at least three weak solutions in Eα,p
0 .

4 Conclusion

In this paper, we discuss the multiplicity of solutions for a class of coupled systems of
fractional p-Laplacian differential equation with impulsive effects. By using the three critical
points theorem, the multiplicity results of weak solutions are obtained under the conditions
of p-sublinear growth. Compared with the existing related work, our results weaken the
existing related conditions and improve and enrich the related results to a certain extent.
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具有脉冲效应的分数阶p-Laplacian方程耦合系统的可解性

薛婷婷, 徐 燕

(新疆工程学院数理学院,新疆 乌鲁木齐 830000)

摘要: 本文研究了一类具有脉冲效应的分数阶p-Laplacian方程耦合系统的问题. 利用变分方法，获得

了该系统解存在的一些新结果. 在证明过程中, 弱化了系统中变系数和非线性项的条件, 推广了已有结果.
关键词: 分数阶微分方程; p-Laplacian 算子; 脉冲; 弱解
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