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Abstract: In this paper, we particularly consider a class of equilibrium problems with equi-

librium constraints (EPEC) and solve its normalized stationary points where the multipliers of the

leaders on the shared constraints are proportionable. We reformulate this kind of EPEC to a stan-

dard mathematical program with equilibrium constraints(MPEC). In addition, we demonstrate the

proposed approach on an EPEC model in similar products market.
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1 Introduction

An equilibrium problem with equilibrium constraints (EPEC) is a member of a new
class of mathematical programs that often arise in engineering and economics applications.
More generally, an EPEC is a mathematical program to find equilibria that simultaneously
solve several mathematical programs with equilibrium constraints (MPEC), each of which
is parameterized by decision variables of other MPEC. In particular, we assume the EPEC
consists of K MPEC, and for each ν = 1, . . . , K, the ν-th MPEC has the following form
with independent decision variables xν ∈ Rnν and shared decision variables y ∈ Rn0 :

min fν(xν , y, x̄−ν)
s.t gν(xν , y, x̄−ν) ≤ 0, hν(xν , y, x̄−ν) = 0

0 ≤ G(xν , y, x̄−ν) ⊥ H(xν , y, x̄−ν) ≥ 0.

(1.1)

where fν : Rn → R, gν : Rn → Rpν , hν : Rn → Rqν , G : Rn → Rm and H : Rn → Rm are
twice continuously differentiable functions in both x = (xν)K

ν=1 and y, with n =
∑K

ν=0 nν .
The notation x̄−ν means that x−ν = (x1, . . . , xν−1, xν+1, . . . , xK) ∈ Rn−nν−n0 is not a variable
but a fixed vector. This implies that we can view (1.1), denoted by MPEC (x̄−ν), as being
parameterized by x̄−ν . Given x̄−ν , we assume the solution set of the ν-th MPEC is nonempty
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and denote it by SOL (MPEC (x̄−ν)). The EPEC, associated with K MPEC defined as the
above, is to find a Nash equilibria (x∗, y∗) ∈ Rn such that

(x∗,ν , y∗) ∈ SOL(MPEC(x∗,−ν)), ν = 1, . . . , K. (1.2)

The EPEC has recently been studied by some researchers and used to model several
problems in applications. Several EPEC models have been developed to study the strategic
behavior of generating firms in deregulated electricity markets [1–4]. A sequential nonlin-
ear complementarity problem approach for solving EPEC is proposed in [5]. This approach
is related to the relaxation technique for solving MPECs that relaxes the complementar-
ity conditions and drives the relaxation parameter to zero [6]. Based on the strong sta-
tionarity conditions of each leader in a multi-leader-follower game, Leyffer and Munson
[7] derived a family of nonlinear complementarity problem, nonlinear programming prob-
lem and MPEC formulations of the multi-leader-follower game. They also reformulated
price-consistent multi-leader-follower game to a standard MPEC by imposing an additional
restriction. See also various applications in economics such as Ehrenmann [8], Ehrenmann
and Neuho [2], Hu [9], Murphy and Smeers [10], Su [11], Yao et al. [12]; and the algorithm
investigation Su [5].Guo and Lin [13, 14] reformulated various stationarities for EPECs as
constrained equations and proposed a globally and superlinearly convergent algorithm to
solve these constrained equations. Li [15] considered a class of EPECs which is completely
separable. In [16, 17], Kulkarni et al. reformulated some EPEC models as MPECs by using
potential games and shared constraints. The normalized equilibrium is such an equilibrium
point that the Lagrange multipliers (shadow prices) associated with the shared constraints
are equal among all players up to constant factors, and its uniqueness is guaranteed under
appropriate conditions [18].Note that EPEC is highly nonconvex and hence we study its
stationary point.

In this paper, we study normalized stationary points of a class of EPEC where the
multipliers of the players on the shared constraints are proportionable. In economic terms,
it means that the relative values of shadow prices associated with the common resources
are identical for all players at any normalized stationary points. We reformulate this kind
of EPEC to a standard MPEC by imposing some additional conditions and solve it by
applying the standard MPEC method, which generalizes the work of Leyffer and Munson [7]
in which the multipliers are identical for all players. The EPEC model is different from the
ones considered in [16, 17] in which the decision variables (on the lower level) vary among
different leaders’decision problems, while it is assumed in our model that the leaders have a
common knowledge on the solution of the lower level equilibrium problem. Moreover, from
the modeling perspective, our research focuses on the leadership role which is different from
the framework in [16, 17]. Separability assumption of the EPEC model is also different from
the ones studied in [13, 14] and [15].

This paper is organized as follows. In the next section we briefly introduce several sta-
tionarity conditions for EPEC and show how equilibrium points can be computed reliably for
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EPEC by solving nonlinear optimization problems. Section 3 present normalized stationary
points of a class of equilibrium problems with equilibrium constraints and reformulate to
stationary points of an associated MPEC. In Section 4, we consider the EPEC model for
similar products market in the same city and demonstrate the proposed approach on the
model. In addition, some concluding remarks are given in Section 5.

The following notations will be used in the paper. We denote the transposed Jacobian
matrix of a differentiable function h : Rs → Rt at a given point x by ∇h(x) ∈ Rs×t. For a
real-valued function h(x, y) with the variable x ∈ Rs and y ∈ Rt, the partial gradients with
respect to x and y are denoted by ∇xh(x, y) ∈ Rs and ∇yh(x, y) ∈ Rt, respectively.

2 Stationarity Conditions and Formulation

In this section, we first review the concepts of the weakly (W-) stationarity, Clarke
(C-) stationarity, Mordukhovich (M-) stationarity and strongly (S-) stationarity for MPEC
(1.1)(see. e.g., [6, 19–22]).

Definition 2.1 A vector (xν , y) is called W-stationary point of the MPEC (1.1), if
there exists a vector multipliers (λν , µν , ψν , σν) such that (xν , y, λν , µν , ψν , σν) satisfies the
following conditions:

∇xν fν(xν , y, x̄−ν) +∇xν gν(xν , y, x̄−ν)λν +∇xν hν(xν , y, x̄−ν)µν

−∇xν G(xν , y, x̄−ν)ψν −∇xν H(xν , y, x̄−ν)σν = 0,

∇yf
ν(xν , y, x̄−ν) +∇yg

ν(xν , y, x̄−ν)λν +∇yh
ν(xν , y, x̄−ν)µν

−∇yG(xν , y, x̄−ν)ψν −∇yH(xν , y, x̄−ν)σν = 0,

0 ≤ −gν(xν , y, x̄−ν) ⊥ λν ≥ 0,

hν(xν , y, x̄−ν) = 0,

0 ≤ G(xν , y, x̄−ν) ⊥ H(xν , y, x̄−ν) ≥ 0,

if Gi(xν , y, x̄−ν) > 0, then ψν
i = 0, i = 1, . . . , m,

if Hi(xν , y, x̄−ν) > 0, then σν
i = 0, i = 1, . . . , m.

(2.1)

In addition, the vector (xν , y) is called

(a) a C-stationary point if ψν
i σν

i ≥ 0 when Gi(xν , y, x̄−ν) = Hi(xν , y, x̄−ν) = 0.

(b) a M-stationary point if either min(ψν
i , σν

i ) > 0 or ψν
i σν

i = 0 when Gi(xν , y, x̄−ν) =
Hi(xν , y, x̄−ν) = 0.

(c) a S-stationary point if ψν
i ≥ 0, σν

i ≥ 0 when Gi(xν , y, x̄−ν) = Hi(xν , y, x̄−ν) = 0.

In [7, 23], it is shown that MPEC can be solved reliably and efficiently by replacing
the complementarity constraint with Y s ≤ 0, where Y is the diagonal matrix with y along
its diagonal. Fletche and Leyffer[24] have shown that the strong stationarity of MPEC
is equivalent to the KKT conditions of a NLP. Since we only consider finite-dimensional
optimization problems, based the stationarity for MPEC (1.1), we define the stationarity for
EPEC (1.2)(see. e.g., [5, 25]).
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Definition 2.2 We say that a vector (x∗, y∗) is a C-stationary(M-stationary, S-stationary)
point of the EPEC (1.2) if for each ν = 1, . . . , K, (xν,∗, y∗) is a C-stationary(M-stationary,
S-stationary) point for the MPEC(x∗,−ν)(1.1).

We have known from [5] that if (x∗, y∗) is an (possibly local) equilibrium point of EPEC
(1.2) and every MPEC of EPEC (1.2) satisfies an MPEC-LICQ, then there exist multipliers
(λ∗, µ∗, ψ∗, σ∗) such that (x∗, y∗) is a S-stationary point of the EPEC (1.2). In the following
two propositions, we will consider the relationship of C-stationary (M-stationary) point and
(possibly local) equilibrium point in EPEC (1.2).

Proposition 2.1 Let (x∗, y∗) be an (possibly local) equilibrium point of EPEC (1.2),
if for each ν = 1, . . . , K, the MPEC-MFCQ holds at (xν,∗, y∗) for MPEC(x∗,−ν)(1.1), then
there exists a vector multipliers (λ∗, µ∗, ψ∗, σ∗) such that (x∗, y∗) is a C-stationary point of
the EPEC (1.2).

Proof Since (x∗, y∗) be an (possibly local) equilibrium point of the EPEC (1.2),
it follows that for each ν = 1, . . . , K, the point (xν,∗, y∗) is a (local) minimizer of the
MPEC(x∗,−ν)(1.1). By applying the Theorem 2 of [6] for each ν = 1, . . . , K, we can show
that there exists a vetor multipliers (λν , µν , ψν , σν) such that (xν,∗, y∗) is a C-stationary
point of the MPEC(x∗,−ν)(1.1) for each ν = 1, . . . , K. We can easy obtain the conclusion
from the definition of C-stationary point of the EPEC (1.2).

Proposition 2.2 Let (x∗, y∗) be an (possibly local) equilibrium point of EPEC (1.2),
if for each ν = 1, . . . , K, the NNAMCQ holds at (xν,∗, y∗) for MPEC(x∗,−ν)(1.1), then there
exists a vector multipliers (λ∗, µ∗, ψ∗, σ∗) such that (x∗, y∗) is a M-stationary point of the
EPEC (1.2).

Proof We can easily obtain the conclusion by applying the Corollary 2.1 of [21]. Since
its proof is similar to Proposition 2.1, we omit the proof here.

3 Normalized Stationary Point of a Class of Equilibrium Problem with

Equilibrium Constraints

In this section, we will consider a special local equilibrium points of the EPEC and call
it normalized stationary points of the EPEC.

Normalized equilibrium, first introduced by Rosen [18], is a special GNEP. To reduce the
number of variables and constraints, which may make the problem more tractable, Leyffer
and Munson [7] make a price-consistency assumption. This technique restricts the solutions
considered to those for which the multipliers (prices) on the shared constraints are the same.
In economic terms, this means that the relative values of shadow prices associated with the
common resources are identical for all players at any normalized equilibrium. We need the
following separability assumption for objective functions.

Definition 3.1 We say that the EPEC (1.2) is relatively separable if the general
constraints consist of a set of constraints independent of other decision variables and a set



No. 2 Solving a class of equilibrium problems with equilibrium constraints 99

of constraints common across all players, that is,

gν(x, y) =

[
ḡν(xν)
g̃(x, y)

]
, hν(x, y) =

[
h̄ν(xν)
h̃(x, y)

]
,

and the objective function consists of a separable term and a term relatively common across
all players, that is

fν(x, y) = f̄ν(xν) + βν f̃(x, y), ν = 1, . . . , K,

where βν > 0.
Assume that the EPEC (1.2) is relatively separable, we can rewrite it as following for

each ν = 1, . . . , K,

min
xν

f̄ν(xν) + βν f̃(x, y)

s.t. ḡν(xν) ≤ 0,

g̃(xν , y, x−ν) ≤ 0,

h̄ν(xν) = 0,

h̃(xν , y, x−ν) = 0,

0 ≤ G(xν , y, x−ν) ⊥ H(xν , y, x−ν) ≥ 0.

(3.1)

Definition 3.2 We say that a vector (x∗, y∗) is a normalized C-(M-,S-) stationary
point of the EPEC (3.1), if (x∗, y∗) is a C-(M-,S-) stationary point of the EPEC (3.1) and
the Lagrange multipliers associated with the shared constraints satisfying:

λ̃ν

λ̃0
=

µ̃ν

µ̃0
=

ψν

ψ0
=

σν

σ0
= βν , ν = 1, . . . , K, (3.2)

where βν > 0.
The following theorem relates normalized stationary point of relatively separable EPEC

to a standard MPEC.
Theorem 3.1 Assume that the EPEC (1.2) is relatively separable. Then the normal-

ized C-(M-,S-) stationary point conditions of the EPEC (1.2) are equivalent to the C-(M-,S-)
stationary point conditions of the following MPEC:

min
x,y

K∑
ν=1

1
βν f̄ν(xν) + f̃(x, y)

s.t ḡν(xν) ≤ 0, ν = 1, . . . , K

g̃(x, y) ≤ 0
h̄ν(xν) = 0, ν = 1, . . . , K

h̃(x, y) = 0
0 ≤ G(x, y) ⊥ H(x, y) ≥ 0.

(3.3)

Proof If the EPEC (1.2) is relatively separable and (x∗, y∗) is its normalized C-(M-,S-)
stationary point, we can reformulate the EPEC(1.2) to the EPEC(3.1) and there exists a
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vector multipliers (λ̃ν , µ̃ν , ρν , τν , ψν , σν), such that (xν , y, λ̃ν , µ̃ν , ρν , τν , ψν , σν) satisfies the
following: ν = 1, . . . , K,

∇xν f̄ν(x∗,ν) +∇xν βν f̃(x∗, y∗) +∇xν ḡν(x∗,ν)ρν +∇xν g̃(x∗, y∗)λ̃ν

+∇xν h̄ν(x∗,ν)τν +∇xν h̃(x∗, y∗)µ̃ν −∇xν G(x∗, y∗)ψν −∇xν H(x∗, y∗)σν = 0,

∇yβ
ν f̃(x∗, y∗) +∇yg̃(x∗, y∗)λ̃ν +∇yh̃(x∗, y∗)µ̃ν

−∇yG(x∗, y∗)ψν −∇yH(x∗, y∗)σν = 0,

0 ≤ −ḡν(x∗,ν) ⊥ ρν ≥ 0,

0 ≤ −g̃(x∗, y∗) ⊥ λ̃ν ≥ 0,

h̄ν(x∗,ν) = 0, h̃(x∗, y∗) = 0,

0 ≤ G(x∗, y∗) ⊥ H(x∗, y∗) ≥ 0,

if Gi(x∗, y∗) > 0, then ψν
i = 0, i = 1, . . . , m,

if Hi(x∗, y∗) > 0, then σν
i = 0, i = 1, . . . , m.

(3.4)

In addition, when Gi(x∗, y∗) = Hi(x∗, y∗) = 0, we can call the vector (x∗, y∗) is, ν = 1, . . . , K,

(a) a C-stationary point if ψν
i σν

i ≥ 0.

(b) a M-stationary point if either min(ψν
i , σν

i ) > 0 or ψν
i σν

i = 0.

(c) a S-stationary point if ψν
i ≥ 0, σν

i ≥ 0.

Note that the definition of normalized C-(M-,S-) stationary point of the EPEC (3.1), we
have

λ̃ν

λ̃0
=

µ̃ν

µ̃0
=

ψν

ψ0
=

σν

σ0
= βν , ν = 1, . . . , K. (3.5)

Namely,

λ̃ν

βν
= λ̃0,

µ̃ν

βν
= µ̃0,

ψν

βν
= ψ0,

σν

βν
= σ0 ν = 1, . . . , K. (3.6)

Dividing βν into (3.4), we can reformulate (3.4) as follows:

∇xν
1

βν f̄ν(x∗,ν) +∇xν f̃(x∗, y∗)
+∇xν ḡν(x∗,ν) ρν

βν +∇xν g̃(x∗, y∗)λ̃0 +∇xν h̄ν(x∗,ν) τν

βν +∇xν h̃(x∗, y∗)µ̃0 = 0
−∇xν G(x∗, y∗)ψ0 −∇xν H(x∗, y∗)σ0 = 0 ν = 1, . . . , K

∇yf̃(x∗, y∗) +∇yg̃(x∗, y∗)λ̃0 +∇yh(x∗, y∗)µ̃0 −∇yG(x∗, y∗)ψ0 −∇yH(x∗, y∗)σ0 = 0,

0 ≤ −ḡν(x∗,ν) ⊥ ρν

βν ≥ 0 ν = 1, . . . , K

0 ≤ −g̃(x∗, y∗) ⊥ λ̃0 ≥ 0,

h̄ν(x∗,ν) = 0, ν = 1, . . . , K

h̃(x∗, y∗) = 0,

0 ≤ G(x∗, y∗) ⊥ H(x∗, y∗) ≥ 0,

if Gi(x∗, y∗) > 0, then ψ0
i = 0, i = 1, . . . , m,

if Hi(x∗, y∗) > 0, then σ0
i = 0, i = 1, . . . , m.

(3.7)
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Obviously, if there exists a vector multipliers (λ̃0, µ̃0, ψ0, σ0, ρ1, . . . , ρK , τ 1, . . . , τK) such
that the vector (x∗, y∗, λ̃0, µ̃0, ψ0, σ0, ρ1, . . . , ρK , τ 1, . . . , τK) satisfies the (3.7), so the vec-
tor (x∗, y∗) is a W-stationary point of the MPEC (3.3).

Additionally, we have the following conclusion by βν > 0, ν = 1, . . . , K and (3.6):
(a) ψνσν ≥ 0 ⇐⇒ ψ0σ0 ≥ 0.
(b) either min(ψν , σν) > 0 or ψνσν = 0 ⇐⇒ either min(ψ0, σ0) > 0 or ψ0σ0 = 0.
(c) ψν ≥ 0, σν ≥ 0 ⇐⇒ ψ0 ≥ 0, σ0 ≥ 0.
Note that the definition of C-(M-,S-) stationary point of EPEC, we can easily get the

conclusion.
Obviously, solving normalized stationary points of relatively separable EPEC is a gen-

eralization of the price-consistent multi-leader-follower games in [7]. By introducing the rel-
atively separable assumption and finding normalized stationary points, we produce a model
that may be easier to solve than the original standard EPEC. The following examples of
Nash game show the results for solving the normalized stationary points:

Example 1 (Leyffer’s example) This problem is taken from [7].

min
x1

x2
1 + ax1x2

s.t x1 + x2 = c,

min
x2

x2
2 + bx1x2

s.t x1 + x2 = c,

(3.8)

where a, b, and c are parameters. The NCP formulation of solving normalized stationary
points for this problem is the system of equations

2x1 + ax2 − aλ0 = 0

2x2 + bx1 − bλ0 = 0

x1 + x2 = c,

where (aλ0, bλ0) is Lagrange multiplier vectors for shared constraint. This problem have
normalized equilibrium ( ac(b−2)

2(ab−a−b)
, bc(a−2)

2(ab−a−b)
), which λ0 = abc−4c

2(ab−a−b)
. It is equivalent to com-

puting a first-order critical point for the single optimization problem:

min
x1,x2

1
a
x2

1 + 1
b
x2

2 + x1x2

s.t x1 + x2 = c.

Example 2 (Harker’s example) This problem is taken from [26].There are two players
and they solve the following problems:

min
x1

x2
1 + 8

3
x1x2 − 34x1

s.t 0 ≤ x1 ≤ 10
x1 + x2 ≤ 15,

min
x2

x2
2 + 5

4
x1x2 − 24.25x2

s.t 0 ≤ x2 ≤ 10
x1 + x2 ≤ 15.

(3.9)
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This is a GNEP with one shared constraint and the solution set is given by

SOLGNEP = {(5, 9)} ∪ {(t, 15− t)|9 ≤ t ≤ 10}.

If ( 8
3
λ0,

5
4
λ0), λ0 ≥ 0 is Lagrange multiplier vectors for shared constraint. This problem has

normalized equilibrium (5, 9) and (47
7

, 58
7

), which λ0 = 0 and λ0 = 4
7
. It is equivalent to

computing a first-order critical point for the single optimization problem:

min
x1,x2

3
8
x2

1 − 51
4

x1 + 4
5
x2

2 − 97
5

x2 + x1x2

s.t 0 ≤ x1 ≤ 10
0 ≤ x2 ≤ 10
x1 + x2 ≤ 15.

4 Applications

In this section, we first discuss normalized stationary points of relatively separable
EPEC arising from competition of manufacturer for similar products in the same city.

4.1 Model in Similar Products Market
Since similar products have some same function but not exactly the same, similar prod-

ucts have different prices. We consider an oligopoly consisting of K + F manufacturers that
produce similar products noncooperatively before the market demand is realized. The first
K manufacturers (herein leaders) have no capacity installed and thus have to decide now
what their future output will be before the demand function is realized. The remaining F

manufacturers (followers) have sufficient capacity installed and thus do not have to make a
decision today, but instead they can wait to observe the quantities supplied by the K leaders
as well as the realized demand function before making a decision on their supply quantities.

The market demand are characterized by inverse demand functions pν(x, y), ν = 1, . . . , K+
F , where pν(x, y) is the market price of the product made by the manufacturer ν, x = (xi)K

i=1,
xi is the supply quantity of the leader i, and y = (yj)F

j=1, yj is the supply quantity of the
follower j.

Before market demand is realized, leader i chooses his quantity xi. The leader’s profit
can be formulated as

Ri(xi, X−i, Y
∗) = xipi(xi, X−i, Y

∗)− Ci(xi), (4.1)

where X−i denotes the total bids by the other leaders, Y ∗ = (y∗j )K
j=1, where y∗j is the strategies

of the j follower. xipi(xi, X−i, Y
∗) means the total revenue for leader i, and Ci(xi) denotes

the cost function of leader i. The jth leader’s decision problem is to choose the supply
quantity xi that maximizes its profit; that is,

max
xi∈Xi

Ri(xi, X−i, Y
∗) = xipi(xi, X−i, Y

∗)− Ci(xi), (4.2)
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where Xi := {xi ∈ [0,+∞) | gi(xi) ≤ 0, g(x, y) ≤ 0} is nonempty and bounded convex set,
for each i = 1, . . . , K.

The jth follower chooses its supply quantity after observing the aggregate leaders supply
X. Thus, the total revenue of the jth follower is yjpj(X∗, yj , Y−j), and its total cost is Cj(yj).
Consequently, the jth follower profit is

Rj(X∗, yj , Y−j) = yjpj(X∗, yj , Y−j)− Cj(yj), (4.3)

where Y−j denotes the total bids by the other followers, X∗ = (x∗i )
K
i=1, where x∗i is the

strategies of the leader i. The jth follower decision problem is

max
yj≥0

Rj(X∗, yj , Y−j) = yjpj(X∗, yj , Y−j)− Cj(yj). (4.4)

Note that the existence of the multi-leader-follower games can be obtained under the
following assumptions: ∀ν = 1, 2, . . . , K + F ,

(A1) pν(·) is twice continuously differentiable and decreasing,

(A2) There holds pν
′
q(q) + qpν

′′
qq(q) ≤ 0 for any q ≥ 0,

(A3) The cost functions Cν(qν), are twice continuously differentiable and their first and
second derivatives are nonnegative for all qν ≥ 0.

Under Assumptions (A1)–(A3), one can easily show that Rν(x, y) is concave, which
guarantees the existence of multi-leader-follower games of the model. Additionally, we sup-
pose that the multipliers of the leaders on the shared constraints are proportionable; that
is,

λ̃ν

λ̃0

=
µ̃ν

µ̃0

=
ψν

ψ0

=
σν

σ0

= βν , ν = 1, . . . , K, (4.5)

where βν > 0.
If (4.4) is convex and satisfies a constraint qualification for each follower, then the

condition that each follower chooses an optimal strategy is equivalent to the following KKT
conditions:

0 ≤ yj ⊥ −∇yj
Rj(X, yj , Y−j) ≥ 0, j = 1, . . . , F.

The aim of each leader i, i = 1, . . . , K, is to choose a strategy xi that solves the following
MPEC:

min
xi∈Xi

−Ri(xi, X−i, Y )

s.t gi(xi) ≤ 0, g(x, y) ≤ 0,

0 ≤ yj ⊥ −∇yj
Rj(X, yj , Y−j) ≥ 0, j = 1, . . . , F.

4.2 Preliminary Numerical Results
Consider the above normalized stationary points of relatively separable EPEC with two

leaders and one follower and set the data as follows:
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• The inverse demand functions are given by

Leader1 P1(x1, x2, y) := a1 − b1(x1 + x2 +
y

x1

),

Leader2 P2(x1, x2, y) := a2 − b2(x1 + x2 +
y

x2

),

follower P3(x1, x2, y) := a3 − b3(x1 + x2 + y).

When x1 ∈ (0,
√

y) is bigger, P1 is bigger. On the other hand, when x1 ∈ (
√

y, +∞)
is bigger, P1 is smaller. Actually, the supply quantities of leaders are far more than
the follower’s and they are in the same order of magnitude. Consequently, x1 is in
(
√

y, +∞) in general. when there is not enough demand for its product, the price goes
down. While the product is in short supply relative to the demand, the price will be
bid up. The effective level of various variables was different.

• The cost functions are given by

Leader1 C1(x1) := c1x1,

Leader2 C2(x2) := c2x2,

follower C3(y) := c3y.

• The constraint functions of the leaders are given by

g1(x1) := x1 − d1,

g2(x2) := x2 − d2,

g(x1, x2, y) := x1 + x2 + y − d3.

where ai ≥ 0, bi ≥ 0, ci ≥ 0, i = 1, 2, 3; x1 ≥ 0, x2 ≥ 0, y ≥ 0.
Then the problem can be written as follows:

min
x1,y

b1x
2
1 − (a1 − c1)x1 + b1x1x2 + b1y

s.t x1 − d1 ≤ 0,

x1 + x2 + y − d3 ≤ 0,

0 ≤ y ⊥ 2b3y − (a3 − c3) ≥ 0.

min
x2,y

b2x
2
2 − (a2 − c2)x2 + b2x1x2 + b2y

s.t x2 − d2 ≤ 0,

x1 + x2 + y − d3 ≤ 0,

0 ≤ y ⊥ 2b3y − (a3 − c3) ≥ 0.

(4.6)

By Theorem 3.1, the normalized C-(M-,S-) stationary point of the EPEC (4.6) is the
standard C-(M-,S-) stationary point of the following MPEC:

min
x,y

x2
1 − a1−c1

b1
x1 + x2

2 − a2−c2
b2

x2 + x1x2

s.t x1 − d1 ≤ 0,

x2 − d2 ≤ 0,

x1 + x2 + y − d3 ≤ 0,

0 ≤ y ⊥ 2b3y − (a3 − c3) ≥ 0,

(4.7)
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Conversely, if (x∗, y∗) is the C-(M-,S-) stationary point of (4.7) then (x∗, y∗) is the normalized
C-(M-,S-) stationary point of the EPEC (4.6).

We set the parameters by a1 = 68, b1 = 4, a2 = 78, b2 = 5, a3 = 60, b3 = 3.c1 = 22, c2 =
26, c3 = 28.

We formulate the solving normalized stationary points of relatively separable EPEC to
a standard MPEC and solve the MPEC in Matlab R2010a. The computational results are

(x1, x2, y) = (4.3667, 3.2667, 1.5167).

The results reveal that the proposed methods were able to solve normalized stationary points
of relatively separable EPEC successfully.

Although the example is basic, it is thought to be competent to show the difficulties in
this field of research and efficiency of our method.

5 Conclusions

We introduce relatively separable EPECs and solve its normalized stationary points,
that result in a standard MPEC. In this approach, the special equilibrium problem with
equilibrium constraints is solved by a single optimization problem, unlike the traditional
approach that solve a sequence of related optimization problems. Additionally, we provide
numerical results and application demonstrating our new approach.
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求解一类含均衡约束的均衡问题

李沛瑜

(西南民族大学数学学院, 四川 成都 610041)

摘要: 本文研究一类含均衡约束的均衡问题(EPEC), 求解其共用约束乘子成比例的正则稳定点, 将此

类EPEC转化为一个标准的含均衡约束的数学规划问题(MPEC)进行求解. 并分析相似产品市场竞争中存在

的此类博弈模型, 将其按上述方法进行有效求解.
关键词: 含均衡约束的数学规划; 含均衡约束的均衡问题; 正则稳定点
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