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Abstract: In this paper, we study a class of linear mappings that triple orthogonality

preservers and characterize those linear mappings that preserve the spectrum on algebras of τ -

measurable operators. First, we use the property B to characterize linear mappings that triple

orthogonality preservers under slightly weaker assumptions, and obtain that such mappings are

generalized Jordan derivations. For the study of linear mappings which preserve the τ -measurable

operator spectrum, the result of spectrum-preserving in bounded operators is extended to un-

bounded operators.
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1 Introduction

Throughout this paper all algebras and vector spaces are over the complex field C,
and all algebras are associative with unity, unless indicated otherwise. Suppose that A is a
complex Banach ∗-algebra, and X is a Banach A-bimodule. We recall that a linear mapping
D : A → X is a derivation whenever D(ab) = D(a)b+ aD(b), for every a, b ∈ A. J. Ringrose
[1] extends S. Sakai’s theorem [2] on automatic continuity of derivations on C∗-algebras by
proving that every derivation from a C∗-algebra A to a Banach A-bimodule is continuous.

In Section 2, we first consider a mapping T from an algebra A into an A-bimodule X
that satisfies the following conditions:

ab = bc = 0 ⇒ aT (b)c + cT (b)a = 0,

and we give several applications of the conclusion.
Our results can be considered as extensions of some of the results in [3] and [4, 5] to

more general classes of Banach algebras, as well as new applications of property B in the
sense of [6] for new types of preservers, and complementary results for [7, 8].

Spectrum-preserving linear mappings are studied for the first time by G. Frobenius [9].
In [10], B. Aupetit studies spectrum-preserving mappings on von Neumann algebras. In
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Section 3, we shall consider the spectrum-preserving mappings on algebras of τ -measurable
operators, which is a version of a theorem known for von Neumann algebras, but dealing
with algebras of unbounded opeators. Theorem 3.6 deals with a factor of type II1 and
Theorem 3.7 with a finite von Neumann algebra. We prove such a mapping is a Jordan
∗-isomorphism.

2 Linear preserving mappings

We recall that a linear mapping G from a Banach algebra A into a Banach A-bimodule
X is said to be a generalized derivation if there exists ξ ∈ X ∗∗ satisfying

G(ab) = G(a)b + aG(b)− aξb, (a, b ∈ A).

We shall say that a linear mapping G from a C∗-algebra A into a Banach A-bimodule X is
a Jordan derivation if G(a ◦ b) = G(a) ◦ b + a ◦ G(b) for every a, b ∈ A, where the Jordan
product is given by a ◦ b := 1

2
(ab + ba). G is called a generalized Jordan derivation if there

exists ξ ∈ X ∗∗ such that the identity G(a ◦ b) = G(a) ◦ b + a ◦ G(b) − Ua,b(ξ), holds for
every a, b in A, where Ua,b(z) := (a ◦ z) ◦ b + (b ◦ z) ◦ a − (a ◦ b) ◦ z. If A is unital, every
generalized (Jordan) derivation D : A → X with D(1) = 0 is a (Jordan) derivation, where
Ua,b(x) := 1

2
(axb + bxa).

We recall that every C∗-algebra is a JB∗-triple with respect to {a, b, c} = 1
2
(ab∗c+cb∗a).

Whenever we use a triple product on a C∗-algebra, it is always this triple product. More
details about JB∗-triple can be found in [11].

We recall that elements a, b in a JB∗-triple E are said to be orthogonal (a ⊥ b for
short) if L(a, b) = 0, where L(a, b) is the operator on E given by L(a, b)x = {a, b, x}. By [12,
Lemma 1], we know that

a ⊥ b ⇔ {a, a, b} = 0 ⇔ {b, b, a} = 0.

When a C∗-algebra A is regarded as a JB∗-triple, it is known that elements a, b in A
are orthogonal if and only if ab∗ = 0 = b∗a ([13]). When A is a commutative C∗-algebra,
a ⊥ b if and only if ab = 0.

A complex Banach algebra A is said to have property B if for every continuous bilinear
mapping f : A × A → X where X is an arbitrary Banach space, the condition that for all
x, y ∈ A,

xy = 0 ⇒ f(x, y) = 0,

implies that

f(xy, z) = f(x, yz) for all x, y, z ∈ A.

It is shown in [6] that many important examples of Banach algebras, including C∗-algebras
and group algebras L1(G) where G is a locally compact group, have property B.
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Recently, A. Essaleh and A. Peralta consider in [5] a linear preserver problem on maps
which are triple derivable at orthogonal pairs. In this paper, we consider a weaker condition
than that in [5].

In what follows, we denote by Asa the hermitian elements of a Banach ∗-algebra A.
Before giving the next lemma, we first give the following definition, which appears in

[4].

Definition 2.1 Let T : A → A be a linear mapping on a C∗-algebra A, and let z be
an element in A. We shall say that T is a triple derivation at z if z = {a, b, c} in A implies
that

T (z) = {T (a), b, c}+ {a, T (b), c}+ {a, b, T (c)}.
Lemma 2.1 Suppose that A is a unital C∗-algebra. Let T : A → A be a linear

mapping satisfying

a ⊥ b ⊥ c ⇒ {a, T (b), c} = 0.

Then the identity

T (p) = pT (p) + T (p)p− pT (1)p (2.1)

holds for every idempotent p in A.

Proof Let a = p, b = 1 − p∗, c = p, where p2 = p in A. According to the hypothesis,
we have pT (1− p∗)∗p = {p, T (1− p∗), p} = 0, which gives pT (1)∗p = pT (p∗)∗p. By applying
∗ to both sides, we get p∗T (1)p∗ = p∗T (p∗)p∗ for every idempotent p in A. But p∗ is an
idempotent, so

pT (1)p = pT (p)p.

By a similar method, let a = 1− p∗, b = p, c = 1− p∗. Then (1− p∗)T (p)∗(1− p∗) = 0, so

T (p) = pT (p) + T (p)p− pT (p)p.

Since pT (1)p = pT (p)p,

T (p) = pT (p) + T (p)p− pT (1)p.

Definition 2.2 A Banach A-bimodule M is said to be essential if it is equal to the
closed linear span of the set of elements of the form x ·m · y with x, y ∈ A,m ∈M.

Definition 2.3 Let A be a Banach algebra. A left approximate identity for A is a
net {ρi}i∈I in A such that

lim
i

ρix = x

for every x ∈ A. A right approximate identity for A is defined similarly. An approximate
identity for A is a net {ρi}i∈I , which is both a left and a right approximate identity for
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A. A (left/right) approximate identity {ρi}i∈I is bounded if for some positive K we have
‖ρi‖ ≤ K for every i ∈ I.

Next we give the following proposition, which plays a crucial role in our paper.

Proposition 2.1 Suppose that A is a Banach algebra satisfying property B and
having a bounded approximate identity {ρi}i∈I . Let M be an essential Banach A-bimodule,
and let T : A →M be a continuous linear mapping satisfying

ab = bc = 0 ⇒ aT (b)c + cT (b)a = 0. (2.2)

Then T is a generalized Jordan derivation.

Proof Fix a, b ∈ A with ab = 0. Define a continuous bilinear map ϕ : A × A → M
given by

ϕ(x, y) = aT (bx)y + yT (bx)a.

When xy = 0 in A, we have abx = 0 = bxy. Hence ϕ(x, y) = 0 whenever ab = 0, a, b ∈ A.

According to the hypothesis
ϕ(xy, z) = ϕ(x, yz)

for any x, y, z ∈ A, that is,

aT (bxy)z + zT (bxy)a = aT (bx)yz + yzT (bx)a,

for all x, y, z, a, b ∈ A with ab = 0. Fix x, y, z ∈ A and define a continuous bilinear mapping
on A by

Φ(a, b) = aT (bxy)z + zT (bxy)a− aT (bx)yz + yzT (bx)a.

Hence, ab = 0 in A implies Φ(a, b) = 0. It follows from the hypothesis on A that

Φ(ab, c) = Φ(ab, c)

for any a, b, c ∈ A, that is,

abT (cxy)z + zT (cxy)ab− abT (cx)yz − yzT (cx)ab

= aT (bcxy)z + zT (bcxy)a− aT (bcx)yz − yzT (bcx)a,

for all x, y, z, a, b, c ∈ A.
First let a = ρi, we get

ρibT (cxy)z + zT (cxy)ρib− ρibT (cx)yz − yzT (cx)ρib

= ρiT (bcxy)z + zT (bcxy)ρi − ρiT (bcx)yz − yzT (bcx)ρi

which converges to

bT (cxy)z + zT (cxy)b− bT (cx)yz − yzT (cx)b
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= T (bcxy)z + zT (bcxy)− T (bcx)yz − yzT (bcx)

with respect to the norm topology. On the other hand, let x = ρi, we get

bT (cρiy)z + zT (cρiy)b− bT (cρi)yz − yzT (cρi)b

= T (bcρiy)z + zT (bcρiy)− T (bcρi)yz − yzT (bcρi),

which converges to
bT (cy)z + zT (cy)b− bT (c)yz − yzT (c)b

= T (bcy)z + zT (bcy)− T (bc)yz − yzT (bc)

with respect to the norm topology.
In the next steps, we consider z = ρi, c = ρi.

Since T is a bounded linear mapping, {ρi}i∈I is bounded, {Tρi}i∈I is bounded too, and we
can assume that {Tρi}i∈I converges to an element ξ in M∗∗ with respect to the w∗-topology,
then {y · T (ρi) · b}i∈I converges to y · ξ · b with respect to the w∗-topology. Hence

2T (by) = T (b)y + bT (y) + T (y)b + yT (b)− yξb− bξy.

Since the right-hand-side of the above identity is symmetric on b and y, we deduce that
T (by) = T (yb).

T (by + yb) = T (b)y + yT (b) + T (y)b + bT (y)− yξb− bξy.

Hence T is a generalized Jordan derivation.

Corollary 2.2 Suppose that A is a commutative Banach algebra with the property
B and having a bounded approximate identity {ρi}i∈I . Let M be an essential Banach A-
bimodule. Then the following conditions are equivalent:

(1) T : A →M is a generalized Jordan derivation;
(2) aT (b)c + cT (b)a = 0 when ab = bc = 0, a, b, c ∈ A.

Proof (2) ⇒ (1) is clear from Proposition 2.1.
(1) ⇒ (2) If T is a generalized Jordan derivation, then T (b) = d(b) + ξb, for any b ∈ A,

where d is a Jordan derivation from A to M∗∗, ξ ∈M∗∗. Hence

aT (b)c + cT (b)a = a(d(b) + ξb)c + c(d(b) + ξb)a.

For the Jordan derivations d, we have

d(abc + cba) = d(a)bc + ad(b)c + abd(c) + d(c)ba + cd(b)a + cbd(a)

for every a, b, c in A. Hence, by the commutativity of A, we get

ad(b)c + cd(b)a = 0



52 Journal of Mathematics Vol. 44

for all a, b, c with ab = bc = 0. By using the commutativity of A, and aξbc+ cξba = 0. Hence

aT (b)c + cT (b)a = 0

when ab = bc = 0, a, b, c ∈ A. The proof is completed.
Suppose that A is a ∗-algebra, an A-bimodule M is called an A-∗-bimodule if M is

equipped with a ∗-mapping from M into itself, such that

(αm + βn)∗ = αm∗ + βn∗, (am)∗ = m∗a∗, (ma)∗ = a∗m∗ and (m∗)∗ = m

whenever a in A, m,n in M and α, β in C.

Corollary 2.3 Suppose that A is a commutative Banach ∗-algebra with property B
and having a bounded approximate identity {ρi}i∈I , M is an essential Banach A-∗-bimodule.
Let T be a continuous linear mapping from A to M which satisfies

aT (b)∗c + cT (b)∗a = 0

whenever a, b, c ∈ A with a ⊥ b ⊥ c. Then T is a generalized Jordan derivation.

Proof If A is commutative, a ⊥ b ⊥ c is equivalent to ab∗ = b∗c = 0. Let d = b∗, then
the conditions in the corollary can be replaced by

ad = dc = 0 ⇒ aT (d∗)∗c + cT (d∗)∗a = 0.

By defining τ(d) = T (d∗)∗, we get that

aτ(d)c + cτ(d)a = 0,

when ad = dc = 0. So, we can apply Corollary 2.2 to deduce that τ is a generalized Jordan
derivation. Hence, according to the definition of τ , T is a generalized Jordan derivation.

Remark 1 We can not deduce that T is a symmetric mapping or a ∗-mapping. If
T is a inner derivation, it satisfies the above equation. However there are inner derivations
which are not ∗-derivations. In particular, T need not to be a local triple derivation, since
each local triple derivation preserves the adjoint ([14, Lemma 9]).

We give the following results which contain some new generalizations of [15, Proposition
3.4], [3, Theorem 2.11], [4, Lemma 2.8] with slightly weaker hypotheses.

Theorem 2.4 Suppose that A is a C∗-algebra, and let T : A → A be a bounded
linear mapping. Then the following statements are equivalent:

(1) {a, T (b), c} = 0, when a ⊥ b ⊥ c, a, b, c ∈ A;
(2) T is a generalized derivation.

Proof (1) ⇒ (2). If a, b, c ∈ Asa and ab = bc = 0. Hence ab∗ = b∗a = 0, bc∗ = c∗b = 0.
So we obtain

aT (b)∗c + cT (b)∗a = 0.
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Then applying ∗ to both sides. We get

aT (b)c + cT (b)a = 0.

By [4], so T is a generalized derivation.
(2) ⇒ (1). By the definition of generalized derivation, T (b) = D(b) + ξb for all b ∈ A,

where D is a derivation from A to A∗∗, ξ ∈ A∗∗. If ab∗ = b∗a = 0, b∗c = cb∗ = 0,
D(a∗b) = D(a∗)b + a∗D(b) = 0, then

b∗D(a∗)∗ + D(b)∗a = 0, cb∗D(a∗)∗ + cD(b)∗a = 0,

so
cD(b)∗a = 0.

By a similar calculation,
aD(b)∗c = 0.

So
aT (b)∗c + cT (b)∗a = a(D(b)∗ + b∗ξ∗)c + c(D(b)∗ + b∗ξ∗)a =

aD(b)∗c + ab∗ξ∗c + cD(b)∗a + cb∗ξ∗a = 0.

Hence T satisfies (1).
Before proving the next main result, we give the following lemma whose proof is con-

tained in the proof of [3, Theorem 2.1].

Lemma 2.5 Suppose that A is a C∗-algebra, M is a Banach A-bimodule, and let
T be a linear mapping from A to M. If there exists a ξ ∈M∗∗ such that T satisfies

T (a2) = T (a)a + aT (a)− aξa,

for all a ∈ Asa, then T is a generalized Jordan derivation.

Proposition 2.2 Suppose that A is a C∗-algebra, M is an essential Banach A-
∗-bimodule, and let T : A → M be a bounded linear mapping satisfying the following
conditions:

aT (b)∗c + cT (b)∗a = 0, a ⊥ b ⊥ c, a, b, c ∈ A. (2.3)

Then T is a generalized Jordan derivation.

Proof Let B denote the abelian C∗-subalgebra of A generated by a self-adjoint element
a of A. According to Corollary 2.3, we see that T |B : B → M is a generalized Jordan
derivation. Hence

T (a2) = T (a)a + aT (a)− aξa

where ξ ∈ M∗∗. For any a ∈ A, a = a1 + ia2, where a1, a2 ∈ Asa, according to Lemma 2.5,
we obtain that

T (ab + ba) = T (a)b + aT (b) + T (b)a + bT (a)− aξb− bξa
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for any a, b ∈ A. So T is a generalized Jordan derivation.
We conclude this section with some results about homomorphisms.

Definition 2.4 Let A and B be Banach algebras. A Jordan homomorphism from A
into B is a linear mapping T : A → B such that

T (a ◦ b) = T (a) ◦ T (b) (a, b ∈ A),

where the symbol ◦ denotes the Jordan product on A, i.e.

a ◦ b =
1
2
(ab + ba) (a, b ∈ A).

We make full use of the powerful property B to characterize homomorphisms on unital
Banach algebras satisfying this property.

Proposition 2.3 Suppose that A is a unital Banach algebra satisfying the property
B, let T : A → A be a continuous linear mapping satisfying

ab = bc = 0 ⇒ T (a)T (b)T (c) + T (c)T (b)T (a) = 0.

If T (1) = 1, then T is a Jordan homomorphism.

Proof Fix a, b ∈ A with ab = 0. Define a continuous bilinear mapping

ϕ : A×A → A,

such that
ϕ(x, y) = T (a)T (bx)T (y) + T (y)T (bx)T (a).

When xy = 0, we have abx = 0 = bxy. Hence ϕ(x, y) = 0, when xy = 0, a, b ∈ A. By
property B,

ϕ(x, 1) = ϕ(1, x),

for any x ∈ A, that is, T (a)T (bx) + T (bx)T (a) = T (a)T (b)T (x) + T (x)T (b)T (a).
Define a continuous bilinear mapping given by

Φ(a, b) = aT (bx) + T (bx)a− aT (b)x− xT (b)a.

By the previous paragraph, ab = 0 ⇒ Φ(a, b) = 0. So, by property B, we get

Φ(a, 1) = Φ(1, a),

for any a ∈ A.
So

T (a)T (x) + T (x)T (a)− T (a)T (1)T (x)− T (x)T (1)T (a)

= T (ax) + T (ax)− T (a)T (x)− T (x)T (a),
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i.e.
2T (ax) = T (a)T (x) + T (a)T (x) + T (x)T (a) + T (x)T (a)−

T (a)T (1)T (x)− T (x)T (1)T (a).

Since T (ax) = T (xa) and T (1) = 1,

T (ax + xa) = T (a)T (x) + T (a)T (x).

Hence T is a Jordan homomorphism.

3 Spectrum-preserving mappings

Let M be a semifinite von Neumann algebra with a faithful semifinite normal trace τ

acting on a Hilbert space H. We denote by P(M) the collection of all projections in M, by
S(M, τ) the collection of all τ -measurable operators with respect to M. More details about
τ -measurable operators can be found in [16].

We recall the definition of the measure topology tτ on the algebra S(M, τ). For every
ε, δ > 0, we define the set

U(ε, δ) = {X ∈ S(M, τ) : there exists P ∈ P(M) such that ‖X(I − P )‖ ≤ ε, τ(P ) ≤ δ}.

The topology generated by the sets U(ε, δ), ε, δ > 0, is called the measure topology tτ on
S(M, τ). It is well known that the algebra S(M, τ) equipped with the measure topology is
a complete metrizable topological algebra.

Definition 3.5 Suppose that T is a closed densely defined linear operator on a
Hilbert space H with domain D(T ). The spectrum σ(T ) of T is the set of those complex
numbers λ such that T − λI is not a one-to-one mapping of D(T ) onto H.

Definition 3.6 Suppose that A,B are algebras over the complex filed C, and φ is a
linear mapping from A to B. If φ satisfies σ(φ(a)) = σ(a), for every a ∈ A, we shall say φ is
a spectrum-preserving linear mapping.

Proposition 3.4 If h = h∗ ∈ S(M, τ), then h is the limit of a sequence of linear
combinations of mutually orthogonal projections in measure topology (S(M, τ) = P(M)

tτ

).

Proof By [17, Theorem 5.6.18], h is affiliated with an abelian von Neumann subalgebra
R of M. Hence h belongs to the S(R, τ |R). For an abelian von Neumann algebra, it is well
known that R can be uniformly approximated by finite linear combinations of mutually
orthogonal projections ([2, Proposition1.3.1 and Lemma 1.7.5]) i.e. R = P(R)

‖·‖
. With the

consideration that S(R, τ |R) = Rtτ|R , it follows that S(R, τ |R) = P(R)
‖·‖tτ|R

= P(R)
tτ|R .

Hence for any h = h∗ ∈ S(M, τ), there exists a von Neumann subalgebra R of M such that
h ∈ P(R)

tτ|R .

Proposition 3.5 Let M1 and M2 be finite von Neumann algebras, and Φ : M1 →
M2 be a unital ∗-anti-homomorphism. If Φ is normal, then Φ is Cauchy-continuous for the
measure topologies on M1 and M2.
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Proof Let τ2 be a normal tracial state on M2. Since Φ is normal, we note that
τ1 := τ2 ◦ Φ is a normal tracial state on M1. For ε, δ > 0, A ∈ U(τ1, ε, δ), there is a
projection E in M1 such that ‖AE‖ ≤ ε and τ1(I − E) ≤ δ. First we note that if Φ is a
∗-anti-homomorphism, then Φ(F )Φ(A)Φ(E) = Φ(EAF ) for any A,E, F ∈M1, and Φ(E) is
a projection if E is a projection.

Let E ∈ P(M1), A ∈M1,

‖Φ(A)Φ(E)‖ = ‖(1− Φ(E))Φ(A)Φ(E) + Φ(E)Φ(A)Φ(E)‖
≤ ‖(1− Φ(E))Φ(A)Φ(E)‖+ ‖Φ(E)Φ(A)Φ(E)‖
= ‖Φ(EA(1− E))‖+ ‖Φ(EAE)‖
≤ ‖AE(1− E)‖+ ‖EAE‖
≤ 2‖AE‖
≤ 2ε,

and τ2(1− Φ(E)) = τ1(I − E) ≤ δ. Consequently,

Φ(U(τ1, ε, δ)) ⊆ U(τ2, 2ε, δ).

Thus if a net {Ai} in M1 is Cauchy in measure topology, then the net {Φ(Ai)} in M2 is
also Cauchy in measure topology. We conclude that Φ is Cauchy-continuous for the measure
topologies on M1 and M2.

Theorem 3.6 Suppose that M is a factor of type II1, and let φ be a spectrum-
preserving linear mapping from S(M, τ) onto itself. Then φ is a ∗-isomorphism or a ∗-anti-
isomorphism.

Proof It can be easily seen that if φ satisfies σ(φ(a)) = σ(a), then φ is a positive
mapping from S(M, τ) onto itself. Hence φ is self-adjoint, i.e. φ(a∗) = φ(a)∗, for every
a ∈ S(M, τ), and if a ∈ M, we can deduce that φ(a) ∈ M. It follows that the restriction
of φ on M, denoted by φ|M, is a spectrum-preserving mapping. According to [10, Theorem
1.3], φ|M is a Jordan isomorphism. By [18, Corollary 11], φ|M is a ∗-isomorphism or a ∗-
anti-isomorphism. Hence φ|M is normal. By [19, Theorem 4.9] and Proposition 3.5, φ|M is
continuous in measure topology. Let h = h∗ ∈ S(M, τ), by Proposition 3.4, h is the limit of
a sequence of linear combinations of orthogonal idempotents Consequently, by [10, Theorem
1.2], φ(h) is the limit of a sequence of linear combinations of orthogonal idempotents. By
continuity of φ, taking the limits of these sequences we conclude that φ(h2) = φ(h)2. Taking
h, k self-adjoint in S(M, τ) we get

(φ(h + k))2 = (φ(h) + φ(k))2 = φ(h)2 + φ(k)2 + φ(h)φ(k) + φ(k)φ(h)

= φ((h + k)2) = φ(h2) + φ(k2) + φ(hk + kh).

Thus φ(kh+kh) = φ(h)φ(k)+φ(k)φ(h), for every h, k self-adjoint elements. Let x ∈ S(M, τ),
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then x = h + ik where h = (x + x∗)/2 and k = (x− x∗)/2i are self-adjoint elements. Hence

φ(x2) = φ(h2 − k2 + i(hk + kh)) = φ(h2)− φ(k)2 + i(φ(h)φ(k) + φ(k)φ(h))

= (φ(h) + iφ(k))2 = φ(x)2.

Hence, φ is a Jordan ∗-isomorphism. It follows that φ is a ∗-isomorphism or a ∗-anti-
isomorphism.

Theorem 3.7 Suppose that M is a finite von Neumann algebra, and let φ be
a spectrum-preserving linear mapping from S(M, τ) onto itself. Then φ is a Jordan ∗-
isomorphism.

Proof In the proof, we need the [18, Theorem 10] instead of [18, Corollary 11]. The
remainder of the proof is similar to that of Theorem 3.6.
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几类保持映射的刻画

潘绍泽, 苏珊珊

(华东理工大学数学学院, 上海 200237)

摘要: 本文研究了一类三元组正交保持的线性映射并刻画了保持τ -可测算子谱的线性映射. 我们在更

弱的条件下利用性质B刻画了保持三元组正交的线性映射, 获得了这类映射是广义的Jordan导子的结果. 对

于保持τ -可测算子谱的线性映射研究, 我们将有界算子中保谱的结果推广到无界算子.
关键词: C∗-代数; 导子; 性质B; 谱
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