CHARACTERIZATIONS OF SEVERAL CLASSES OF PRESERVERS

PAN Shao－ze，SU Shan－shan
（School of Mathematics，East China University of Science and Technology，Shanghai 200237，China）

Abstract

In this paper，we study a class of linear mappings that triple orthogonality preservers and characterize those linear mappings that preserve the spectrum on algebras of τ－ measurable operators．First，we use the property \mathbb{B} to characterize linear mappings that triple orthogonality preservers under slightly weaker assumptions，and obtain that such mappings are generalized Jordan derivations．For the study of linear mappings which preserve the τ－measurable operator spectrum，the result of spectrum－preserving in bounded operators is extended to un－ bounded operators．

Keywords：C^{*}－algebra；derivation；property \mathbb{B} ；spectrum
2010 MR Subject Classification：47B49；46L57；46H40；47A10
Document code：A Article ID：0255－7797（2024）01－0047－12

1 Introduction

Throughout this paper all algebras and vector spaces are over the complex field \mathbb{C} ， and all algebras are associative with unity，unless indicated otherwise．Suppose that \mathcal{A} is a complex Banach $*$－algebra，and \mathcal{X} is a Banach \mathcal{A}－bimodule．We recall that a linear mapping $D: \mathcal{A} \rightarrow \mathcal{X}$ is a derivation whenever $D(a b)=D(a) b+a D(b)$ ，for every $a, b \in \mathcal{A}$ ．J．Ringrose ［1］extends S．Sakai＇s theorem［2］on automatic continuity of derivations on C^{*}－algebras by proving that every derivation from a C^{*}－algebra \mathcal{A} to a Banach \mathcal{A}－bimodule is continuous．

In Section 2，we first consider a mapping T from an algebra \mathcal{A} into an \mathcal{A}－bimodule \mathcal{X} that satisfies the following conditions：

$$
a b=b c=0 \Rightarrow a T(b) c+c T(b) a=0,
$$

and we give several applications of the conclusion．
Our results can be considered as extensions of some of the results in［3］and $[4,5]$ to more general classes of Banach algebras，as well as new applications of property \mathbb{B} in the sense of［6］for new types of preservers，and complementary results for $[7,8]$ ．

Spectrum－preserving linear mappings are studied for the first time by G．Frobenius［9］． In［10］，B．Aupetit studies spectrum－preserving mappings on von Neumann algebras．In

[^0]Section 3, we shall consider the spectrum-preserving mappings on algebras of τ-measurable operators, which is a version of a theorem known for von Neumann algebras, but dealing with algebras of unbounded opeators. Theorem 3.6 deals with a factor of type $I I_{1}$ and Theorem 3.7 with a finite von Neumann algebra. We prove such a mapping is a Jordan *-isomorphism.

2 Linear preserving mappings

We recall that a linear mapping G from a Banach algebra \mathcal{A} into a Banach \mathcal{A}-bimodule \mathcal{X} is said to be a generalized derivation if there exists $\xi \in \mathcal{X}^{* *}$ satisfying

$$
G(a b)=G(a) b+a G(b)-a \xi b,(a, b \in \mathcal{A}) .
$$

We shall say that a linear mapping G from a C^{*}-algebra \mathcal{A} into a Banach \mathcal{A}-bimodule \mathcal{X} is a Jordan derivation if $G(a \circ b)=G(a) \circ b+a \circ G(b)$ for every $a, b \in \mathcal{A}$, where the Jordan product is given by $a \circ b:=\frac{1}{2}(a b+b a) . G$ is called a generalized Jordan derivation if there exists $\xi \in \mathcal{X}^{* *}$ such that the identity $G(a \circ b)=G(a) \circ b+a \circ G(b)-U_{a, b}(\xi)$, holds for every a, b in \mathcal{A}, where $U_{a, b}(z):=(a \circ z) \circ b+(b \circ z) \circ a-(a \circ b) \circ z$. If \mathcal{A} is unital, every generalized (Jordan) derivation $D: \mathcal{A} \rightarrow \mathcal{X}$ with $D(1)=0$ is a (Jordan) derivation, where $U_{a, b}(x):=\frac{1}{2}(a x b+b x a)$.

We recall that every C^{*}-algebra is a $J B^{*}$-triple with respect to $\{a, b, c\}=\frac{1}{2}\left(a b^{*} c+c b^{*} a\right)$. Whenever we use a triple product on a C^{*}-algebra, it is always this triple product. More details about $J B^{*}$-triple can be found in [11].

We recall that elements a, b in a $J B^{*}$-triple \mathcal{E} are said to be orthogonal ($a \perp b$ for short) if $L(a, b)=0$, where $L(a, b)$ is the operator on \mathcal{E} given by $L(a, b) x=\{a, b, x\}$. By [12, Lemma 1], we know that

$$
a \perp b \Leftrightarrow\{a, a, b\}=0 \Leftrightarrow\{b, b, a\}=0 .
$$

When a C^{*}-algebra \mathcal{A} is regarded as a $J B^{*}$-triple, it is known that elements a, b in \mathcal{A} are orthogonal if and only if $a b^{*}=0=b^{*} a([13])$. When \mathcal{A} is a commutative C^{*}-algebra, $a \perp b$ if and only if $a b=0$.

A complex Banach algebra \mathcal{A} is said to have property \mathbb{B} if for every continuous bilinear mapping $f: \mathcal{A} \times \mathcal{A} \rightarrow \mathcal{X}$ where \mathcal{X} is an arbitrary Banach space, the condition that for all $x, y \in \mathcal{A}$,

$$
x y=0 \Rightarrow f(x, y)=0
$$

implies that

$$
f(x y, z)=f(x, y z) \text { for all } x, y, z \in \mathcal{A} .
$$

It is shown in [6] that many important examples of Banach algebras, including C^{*}-algebras and group algebras $L^{1}(G)$ where G is a locally compact group, have property \mathbb{B}.

Recently, A. Essaleh and A. Peralta consider in [5] a linear preserver problem on maps which are triple derivable at orthogonal pairs. In this paper, we consider a weaker condition than that in [5].

In what follows, we denote by $\mathcal{A}_{s a}$ the hermitian elements of a Banach $*$-algebra \mathcal{A}.
Before giving the next lemma, we first give the following definition, which appears in [4].

Definition 2.1 Let $T: \mathcal{A} \rightarrow \mathcal{A}$ be a linear mapping on a C^{*}-algebra \mathcal{A}, and let z be an element in \mathcal{A}. We shall say that T is a triple derivation at z if $z=\{a, b, c\}$ in \mathcal{A} implies that

$$
T(z)=\{T(a), b, c\}+\{a, T(b), c\}+\{a, b, T(c)\}
$$

Lemma 2.1 Suppose that \mathcal{A} is a unital C^{*}-algebra. Let $T: \mathcal{A} \rightarrow \mathcal{A}$ be a linear mapping satisfying

$$
a \perp b \perp c \Rightarrow\{a, T(b), c\}=0
$$

Then the identity

$$
\begin{equation*}
T(p)=p T(p)+T(p) p-p T(1) p \tag{2.1}
\end{equation*}
$$

holds for every idempotent p in \mathcal{A}.
Proof Let $a=p, b=1-p^{*}, c=p$, where $p^{2}=p$ in \mathcal{A}. According to the hypothesis, we have $p T\left(1-p^{*}\right)^{*} p=\left\{p, T\left(1-p^{*}\right), p\right\}=0$, which gives $p T(1)^{*} p=p T\left(p^{*}\right)^{*} p$. By applying * to both sides, we get $p^{*} T(1) p^{*}=p^{*} T\left(p^{*}\right) p^{*}$ for every idempotent p in \mathcal{A}. But p^{*} is an idempotent, so

$$
p T(1) p=p T(p) p
$$

By a similar method, let $a=1-p^{*}, b=p, c=1-p^{*}$. Then $\left(1-p^{*}\right) T(p)^{*}\left(1-p^{*}\right)=0$, so

$$
T(p)=p T(p)+T(p) p-p T(p) p
$$

Since $p T(1) p=p T(p) p$,

$$
T(p)=p T(p)+T(p) p-p T(1) p
$$

Definition 2.2 A Banach \mathcal{A}-bimodule \mathcal{M} is said to be essential if it is equal to the closed linear span of the set of elements of the form $x \cdot m \cdot y$ with $x, y \in \mathcal{A}, m \in \mathcal{M}$.

Definition 2.3 Let \mathcal{A} be a Banach algebra. A left approximate identity for \mathcal{A} is a net $\left\{\rho_{i}\right\}_{i \in I}$ in \mathcal{A} such that

$$
\lim _{i} \rho_{i} x=x
$$

for every $x \in \mathcal{A}$. A right approximate identity for \mathcal{A} is defined similarly. An approximate identity for \mathcal{A} is a net $\left\{\rho_{i}\right\}_{i \in I}$, which is both a left and a right approximate identity for
\mathcal{A}. A (left/right) approximate identity $\left\{\rho_{i}\right\}_{i \in I}$ is bounded if for some positive K we have $\left\|\rho_{i}\right\| \leq K$ for every $i \in I$.

Next we give the following proposition, which plays a crucial role in our paper.
Proposition 2.1 Suppose that \mathcal{A} is a Banach algebra satisfying property \mathbb{B} and having a bounded approximate identity $\left\{\rho_{i}\right\}_{i \in I}$. Let \mathcal{M} be an essential Banach \mathcal{A}-bimodule, and let $T: \mathcal{A} \rightarrow \mathcal{M}$ be a continuous linear mapping satisfying

$$
\begin{equation*}
a b=b c=0 \Rightarrow a T(b) c+c T(b) a=0 . \tag{2.2}
\end{equation*}
$$

Then T is a generalized Jordan derivation.
Proof Fix $a, b \in \mathcal{A}$ with $a b=0$. Define a continuous bilinear map $\varphi: \mathcal{A} \times \mathcal{A} \rightarrow \mathcal{M}$ given by

$$
\varphi(x, y)=a T(b x) y+y T(b x) a
$$

When $x y=0$ in \mathcal{A}, we have $a b x=0=b x y$. Hence $\varphi(x, y)=0$ whenever $a b=0, a, b \in \mathcal{A}$. According to the hypothesis

$$
\varphi(x y, z)=\varphi(x, y z)
$$

for any $x, y, z \in \mathcal{A}$, that is,

$$
a T(b x y) z+z T(b x y) a=a T(b x) y z+y z T(b x) a
$$

for all $x, y, z, a, b \in \mathcal{A}$ with $a b=0$. Fix $x, y, z \in \mathcal{A}$ and define a continuous bilinear mapping on \mathcal{A} by

$$
\Phi(a, b)=a T(b x y) z+z T(b x y) a-a T(b x) y z+y z T(b x) a .
$$

Hence, $a b=0$ in \mathcal{A} implies $\Phi(a, b)=0$. It follows from the hypothesis on \mathcal{A} that

$$
\Phi(a b, c)=\Phi(a b, c)
$$

for any $a, b, c \in \mathcal{A}$, that is,

$$
\begin{aligned}
& a b T(c x y) z+z T(c x y) a b-a b T(c x) y z-y z T(c x) a b \\
= & a T(b c x y) z+z T(b c x y) a-a T(b c x) y z-y z T(b c x) a,
\end{aligned}
$$

for all $x, y, z, a, b, c \in \mathcal{A}$.
First let $a=\rho_{i}$, we get

$$
\begin{aligned}
& \rho_{i} b T(c x y) z+z T(c x y) \rho_{i} b-\rho_{i} b T(c x) y z-y z T(c x) \rho_{i} b \\
= & \rho_{i} T(b c x y) z+z T(b c x y) \rho_{i}-\rho_{i} T(b c x) y z-y z T(b c x) \rho_{i}
\end{aligned}
$$

which converges to

$$
b T(c x y) z+z T(c x y) b-b T(c x) y z-y z T(c x) b
$$

$$
=T(b c x y) z+z T(b c x y)-T(b c x) y z-y z T(b c x)
$$

with respect to the norm topology. On the other hand, let $x=\rho_{i}$, we get

$$
\begin{aligned}
& b T\left(c \rho_{i} y\right) z+z T\left(c \rho_{i} y\right) b-b T\left(c \rho_{i}\right) y z-y z T\left(c \rho_{i}\right) b \\
= & T\left(b c \rho_{i} y\right) z+z T\left(b c \rho_{i} y\right)-T\left(b c \rho_{i}\right) y z-y z T\left(b c \rho_{i}\right),
\end{aligned}
$$

which converges to

$$
\begin{aligned}
& b T(c y) z+z T(c y) b-b T(c) y z-y z T(c) b \\
= & T(b c y) z+z T(b c y)-T(b c) y z-y z T(b c)
\end{aligned}
$$

with respect to the norm topology.
In the next steps, we consider $z=\rho_{i}, c=\rho_{i}$.
Since T is a bounded linear mapping, $\left\{\rho_{i}\right\}_{i \in I}$ is bounded, $\left\{T \rho_{i}\right\}_{i \in I}$ is bounded too, and we can assume that $\left\{T \rho_{i}\right\}_{i \in I}$ converges to an element ξ in $\mathcal{M}^{* *}$ with respect to the w^{*}-topology, then $\left\{y \cdot T\left(\rho_{i}\right) \cdot b\right\}_{i \in I}$ converges to $y \cdot \xi \cdot b$ with respect to the w^{*}-topology. Hence

$$
2 T(b y)=T(b) y+b T(y)+T(y) b+y T(b)-y \xi b-b \xi y .
$$

Since the right-hand-side of the above identity is symmetric on b and y, we deduce that $T(b y)=T(y b)$.

$$
T(b y+y b)=T(b) y+y T(b)+T(y) b+b T(y)-y \xi b-b \xi y
$$

Hence T is a generalized Jordan derivation.
Corollary 2.2 Suppose that \mathcal{A} is a commutative Banach algebra with the property \mathbb{B} and having a bounded approximate identity $\left\{\rho_{i}\right\}_{i \in I}$. Let \mathcal{M} be an essential Banach \mathcal{A} bimodule. Then the following conditions are equivalent:
(1) $T: \mathcal{A} \rightarrow \mathcal{M}$ is a generalized Jordan derivation;
(2) $a T(b) c+c T(b) a=0$ when $a b=b c=0, a, b, c \in \mathcal{A}$.

Proof $(2) \Rightarrow(1)$ is clear from Proposition 2.1.
$(1) \Rightarrow(2)$ If T is a generalized Jordan derivation, then $T(b)=d(b)+\xi b$, for any $b \in \mathcal{A}$, where d is a Jordan derivation from \mathcal{A} to $\mathcal{M}^{* *}, \xi \in \mathcal{M}^{* *}$. Hence

$$
a T(b) c+c T(b) a=a(d(b)+\xi b) c+c(d(b)+\xi b) a .
$$

For the Jordan derivations d, we have

$$
d(a b c+c b a)=d(a) b c+a d(b) c+a b d(c)+d(c) b a+c d(b) a+c b d(a)
$$

for every a, b, c in \mathcal{A}. Hence, by the commutativity of \mathcal{A}, we get

$$
a d(b) c+c d(b) a=0
$$

for all a, b, c with $a b=b c=0$. By using the commutativity of \mathcal{A}, and $a \xi b c+c \xi b a=0$. Hence

$$
a T(b) c+c T(b) a=0
$$

when $a b=b c=0, a, b, c \in \mathcal{A}$. The proof is completed.
Suppose that \mathcal{A} is a $*$-algebra, an \mathcal{A}-bimodule \mathcal{M} is called an \mathcal{A}-*-bimodule if \mathcal{M} is equipped with a $*$-mapping from \mathcal{M} into itself, such that

$$
(\alpha m+\beta n)^{*}=\bar{\alpha} m^{*}+\bar{\beta} n^{*},(a m)^{*}=m^{*} a^{*},(m a)^{*}=a^{*} m^{*} \text { and }\left(m^{*}\right)^{*}=m
$$

whenever a in \mathcal{A}, m, n in \mathcal{M} and α, β in \mathbb{C}.
Corollary 2.3 Suppose that \mathcal{A} is a commutative Banach $*$-algebra with property \mathbb{B} and having a bounded approximate identity $\left\{\rho_{i}\right\}_{i \in I}, \mathcal{M}$ is an essential Banach \mathcal{A}-*-bimodule. Let T be a continuous linear mapping from \mathcal{A} to \mathcal{M} which satisfies

$$
a T(b)^{*} c+c T(b)^{*} a=0
$$

whenever $a, b, c \in \mathcal{A}$ with $a \perp b \perp c$. Then T is a generalized Jordan derivation.
Proof If \mathcal{A} is commutative, $a \perp b \perp c$ is equivalent to $a b^{*}=b^{*} c=0$. Let $d=b^{*}$, then the conditions in the corollary can be replaced by

$$
a d=d c=0 \Rightarrow a T\left(d^{*}\right)^{*} c+c T\left(d^{*}\right)^{*} a=0
$$

By defining $\tau(d)=T\left(d^{*}\right)^{*}$, we get that

$$
a \tau(d) c+c \tau(d) a=0
$$

when $a d=d c=0$. So, we can apply Corollary 2.2 to deduce that τ is a generalized Jordan derivation. Hence, according to the definition of τ, T is a generalized Jordan derivation.

Remark 1 We can not deduce that T is a symmetric mapping or a $*$-mapping. If T is a inner derivation, it satisfies the above equation. However there are inner derivations which are not $*$-derivations. In particular, T need not to be a local triple derivation, since each local triple derivation preserves the adjoint ([14, Lemma 9]).

We give the following results which contain some new generalizations of $[15$, Proposition 3.4], [3, Theorem 2.11], [4, Lemma 2.8] with slightly weaker hypotheses.

Theorem 2.4 Suppose that \mathcal{A} is a C^{*}-algebra, and let $T: \mathcal{A} \rightarrow \mathcal{A}$ be a bounded linear mapping. Then the following statements are equivalent:
(1) $\{a, T(b), c\}=0$, when $a \perp b \perp c, a, b, c \in \mathcal{A}$;
(2) T is a generalized derivation.

Proof (1) $\Rightarrow(2)$. If $a, b, c \in \mathcal{A}_{s a}$ and $a b=b c=0$. Hence $a b^{*}=b^{*} a=0, b c^{*}=c^{*} b=0$.
So we obtain

$$
a T(b)^{*} c+c T(b)^{*} a=0
$$

Then applying $*$ to both sides. We get

$$
a T(b) c+c T(b) a=0
$$

By [4], so T is a generalized derivation.
$(2) \Rightarrow(1)$. By the definition of generalized derivation, $T(b)=D(b)+\xi b$ for all $b \in \mathcal{A}$, where D is a derivation from \mathcal{A} to $\mathcal{A}^{* *}, \xi \in \mathcal{A}^{* *}$. If $a b^{*}=b^{*} a=0, b^{*} c=c b^{*}=0$, $D\left(a^{*} b\right)=D\left(a^{*}\right) b+a^{*} D(b)=0$, then

$$
b^{*} D\left(a^{*}\right)^{*}+D(b)^{*} a=0, c b^{*} D\left(a^{*}\right)^{*}+c D(b)^{*} a=0
$$

so

$$
c D(b)^{*} a=0
$$

By a similar calculation,

$$
a D(b)^{*} c=0
$$

So

$$
\begin{gathered}
a T(b)^{*} c+c T(b)^{*} a=a\left(D(b)^{*}+b^{*} \xi^{*}\right) c+c\left(D(b)^{*}+b^{*} \xi^{*}\right) a= \\
a D(b)^{*} c+a b^{*} \xi^{*} c+c D(b)^{*} a+c b^{*} \xi^{*} a=0 .
\end{gathered}
$$

Hence T satisfies (1).
Before proving the next main result, we give the following lemma whose proof is contained in the proof of [3, Theorem 2.1].

Lemma 2.5 Suppose that \mathcal{A} is a C^{*}-algebra, \mathcal{M} is a Banach \mathcal{A}-bimodule, and let T be a linear mapping from \mathcal{A} to \mathcal{M}. If there exists a $\xi \in \mathcal{M}^{* *}$ such that T satisfies

$$
T\left(a^{2}\right)=T(a) a+a T(a)-a \xi a
$$

for all $a \in \mathcal{A}_{s a}$, then T is a generalized Jordan derivation.
Proposition 2.2 Suppose that \mathcal{A} is a C^{*}-algebra, \mathcal{M} is an essential Banach \mathcal{A} -*-bimodule, and let $T: \mathcal{A} \rightarrow \mathcal{M}$ be a bounded linear mapping satisfying the following conditions:

$$
\begin{equation*}
a T(b)^{*} c+c T(b)^{*} a=0, a \perp b \perp c, a, b, c \in \mathcal{A} \tag{2.3}
\end{equation*}
$$

Then T is a generalized Jordan derivation.
Proof Let \mathcal{B} denote the abelian C^{*}-subalgebra of \mathcal{A} generated by a self-adjoint element a of \mathcal{A}. According to Corollary 2.3, we see that $\left.T\right|_{\mathcal{B}}: \mathcal{B} \rightarrow \mathcal{M}$ is a generalized Jordan derivation. Hence

$$
T\left(a^{2}\right)=T(a) a+a T(a)-a \xi a
$$

where $\xi \in \mathcal{M}^{* *}$. For any $a \in \mathcal{A}, a=a_{1}+i a_{2}$, where $a_{1}, a_{2} \in \mathcal{A}_{s a}$, according to Lemma 2.5, we obtain that

$$
T(a b+b a)=T(a) b+a T(b)+T(b) a+b T(a)-a \xi b-b \xi a
$$

for any $a, b \in \mathcal{A}$. So T is a generalized Jordan derivation.
We conclude this section with some results about homomorphisms.
Definition 2.4 Let \mathcal{A} and \mathcal{B} be Banach algebras. A Jordan homomorphism from \mathcal{A} into \mathcal{B} is a linear mapping $T: \mathcal{A} \rightarrow \mathcal{B}$ such that

$$
T(a \circ b)=T(a) \circ T(b) \quad(a, b \in \mathcal{A})
$$

where the symbol o denotes the Jordan product on \mathcal{A}, i.e.

$$
a \circ b=\frac{1}{2}(a b+b a) \quad(a, b \in \mathcal{A})
$$

We make full use of the powerful property \mathbb{B} to characterize homomorphisms on unital Banach algebras satisfying this property.

Proposition 2.3 Suppose that \mathcal{A} is a unital Banach algebra satisfying the property \mathbb{B}, let $T: \mathcal{A} \rightarrow \mathcal{A}$ be a continuous linear mapping satisfying

$$
a b=b c=0 \Rightarrow T(a) T(b) T(c)+T(c) T(b) T(a)=0 .
$$

If $T(1)=1$, then T is a Jordan homomorphism.
Proof Fix $a, b \in \mathcal{A}$ with $a b=0$. Define a continuous bilinear mapping

$$
\varphi: \mathcal{A} \times \mathcal{A} \rightarrow \mathcal{A}
$$

such that

$$
\varphi(x, y)=T(a) T(b x) T(y)+T(y) T(b x) T(a)
$$

When $x y=0$, we have $a b x=0=b x y$. Hence $\varphi(x, y)=0$, when $x y=0, a, b \in \mathcal{A}$. By property \mathbb{B},

$$
\varphi(x, 1)=\varphi(1, x)
$$

for any $x \in \mathcal{A}$, that is, $T(a) T(b x)+T(b x) T(a)=T(a) T(b) T(x)+T(x) T(b) T(a)$.
Define a continuous bilinear mapping given by

$$
\Phi(a, b)=a T(b x)+T(b x) a-a T(b) x-x T(b) a
$$

By the previous paragraph, $a b=0 \Rightarrow \Phi(a, b)=0$. So, by property \mathbb{B}, we get

$$
\Phi(a, 1)=\Phi(1, a),
$$

for any $a \in \mathcal{A}$.
So

$$
\begin{gathered}
T(a) T(x)+T(x) T(a)-T(a) T(1) T(x)-T(x) T(1) T(a) \\
=T(a x)+T(a x)-T(a) T(x)-T(x) T(a)
\end{gathered}
$$

i.e.

$$
\begin{gathered}
2 T(a x)=T(a) T(x)+T(a) T(x)+T(x) T(a)+T(x) T(a)- \\
T(a) T(1) T(x)-T(x) T(1) T(a) .
\end{gathered}
$$

Since $T(a x)=T(x a)$ and $T(1)=1$,

$$
T(a x+x a)=T(a) T(x)+T(a) T(x)
$$

Hence T is a Jordan homomorphism.

3 Spectrum-preserving mappings

Let \mathcal{M} be a semifinite von Neumann algebra with a faithful semifinite normal trace τ acting on a Hilbert space \mathcal{H}. We denote by $\mathcal{P}(\mathcal{M})$ the collection of all projections in \mathcal{M}, by $S(\mathcal{M}, \tau)$ the collection of all τ-measurable operators with respect to \mathcal{M}. More details about τ-measurable operators can be found in [16].

We recall the definition of the measure topology t_{τ} on the algebra $S(\mathcal{M}, \tau)$. For every $\epsilon, \delta>0$, we define the set

$$
U(\epsilon, \delta)=\{X \in S(\mathcal{M}, \tau): \text { there exists } P \in \mathcal{P}(\mathcal{M}) \text { such that }\|X(I-P)\| \leq \epsilon, \tau(P) \leq \delta\}
$$

The topology generated by the sets $U(\epsilon, \delta), \epsilon, \delta>0$, is called the measure topology t_{τ} on $S(\mathcal{M}, \tau)$. It is well known that the algebra $S(\mathcal{M}, \tau)$ equipped with the measure topology is a complete metrizable topological algebra.

Definition 3.5 Suppose that T is a closed densely defined linear operator on a Hilbert space \mathcal{H} with domain $D(T)$. The spectrum $\sigma(T)$ of T is the set of those complex numbers λ such that $T-\lambda I$ is not a one-to-one mapping of $D(T)$ onto \mathcal{H}.

Definition 3.6 Suppose that \mathcal{A}, \mathcal{B} are algebras over the complex filed \mathbb{C}, and ϕ is a linear mapping from \mathcal{A} to \mathcal{B}. If ϕ satisfies $\sigma(\phi(a))=\sigma(a)$, for every $a \in \mathcal{A}$, we shall say ϕ is a spectrum-preserving linear mapping.

Proposition 3.4 If $h=h^{*} \in S(\mathcal{M}, \tau)$, then h is the limit of a sequence of linear combinations of mutually orthogonal projections in measure topology $\left(S(\mathcal{M}, \tau)=\overline{\mathcal{P}}(\mathcal{M}){ }^{\tau_{\tau}}\right)$.

Proof By [17, Theorem 5.6.18], h is affiliated with an abelian von Neumann subalgebra \mathcal{R} of \mathcal{M}. Hence h belongs to the $S\left(\mathcal{R},\left.\tau\right|_{\mathcal{R}}\right)$. For an abelian von Neumann algebra, it is well known that \mathcal{R} can be uniformly approximated by finite linear combinations of mutually orthogonal projections ([2, Proposition1.3.1 and Lemma 1.7.5]) i.e. $\mathcal{R}=\overline{\mathcal{P}(\mathcal{R})}{ }^{\|\cdot\|}$. With the consideration that $S\left(\mathcal{R},\left.\tau\right|_{\mathcal{R}}\right)=\overline{\mathcal{R}}^{t_{\tau \mid \mathcal{R}}}$, it follows that $S\left(\mathcal{R},\left.\tau\right|_{\mathcal{R}}\right)=\overline{\overline{\mathcal{P}}(\mathcal{R})}^{\|\cdot\|^{\left.t_{\tau}\right|_{\mathcal{R}}}}=\overline{\mathcal{P}(\mathcal{R})}^{t_{\left.\tau\right|_{\mathcal{R}}}}$. Hence for any $h=h^{*} \in S(\mathcal{M}, \tau)$, there exists a von Neumann subalgebra \mathcal{R} of \mathcal{M} such that $h \in \overline{\mathcal{P}}(\mathcal{R})^{t_{\tau \mid \mathcal{R}}}$.

Proposition 3.5 Let \mathcal{M}_{1} and \mathcal{M}_{2} be finite von Neumann algebras, and $\Phi: \mathcal{M}_{1} \rightarrow$ \mathcal{M}_{2} be a unital $*$-anti-homomorphism. If Φ is normal, then Φ is Cauchy-continuous for the measure topologies on \mathcal{M}_{1} and \mathcal{M}_{2}.

Proof Let τ_{2} be a normal tracial state on \mathcal{M}_{2}. Since Φ is normal, we note that $\tau_{1}:=\tau_{2} \circ \Phi$ is a normal tracial state on \mathcal{M}_{1}. For $\epsilon, \delta>0, A \in U\left(\tau_{1}, \epsilon, \delta\right)$, there is a projection E in \mathcal{M}_{1} such that $\|A E\| \leq \epsilon$ and $\tau_{1}(I-E) \leq \delta$. First we note that if Φ is a *-anti-homomorphism, then $\Phi(F) \Phi(A) \Phi(E)=\Phi(E A F)$ for any $A, E, F \in \mathcal{M}_{1}$, and $\Phi(E)$ is a projection if E is a projection.

Let $E \in \mathcal{P}\left(\mathcal{M}_{1}\right), A \in \mathcal{M}_{1}$,

$$
\begin{aligned}
\|\Phi(A) \Phi(E)\| & =\|(1-\Phi(E)) \Phi(A) \Phi(E)+\Phi(E) \Phi(A) \Phi(E)\| \\
& \leq\|(1-\Phi(E)) \Phi(A) \Phi(E)\|+\|\Phi(E) \Phi(A) \Phi(E)\| \\
& =\|\Phi(E A(1-E))\|+\|\Phi(E A E)\| \\
& \leq\|A E(1-E)\|+\|E A E\| \\
& \leq 2\|A E\| \\
& \leq 2 \epsilon
\end{aligned}
$$

and $\tau_{2}(1-\Phi(E))=\tau_{1}(I-E) \leq \delta$. Consequently,

$$
\Phi\left(U\left(\tau_{1}, \epsilon, \delta\right)\right) \subseteq U\left(\tau_{2}, 2 \epsilon, \delta\right)
$$

Thus if a net $\left\{A_{i}\right\}$ in \mathcal{M}_{1} is Cauchy in measure topology, then the net $\left\{\Phi\left(A_{i}\right)\right\}$ in \mathcal{M}_{2} is also Cauchy in measure topology. We conclude that Φ is Cauchy-continuous for the measure topologies on \mathcal{M}_{1} and \mathcal{M}_{2}.

Theorem 3.6 Suppose that \mathcal{M} is a factor of type $I I_{1}$, and let ϕ be a spectrumpreserving linear mapping from $S(\mathcal{M}, \tau)$ onto itself. Then ϕ is a $*$-isomorphism or a $*$-antiisomorphism.

Proof It can be easily seen that if ϕ satisfies $\sigma(\phi(a))=\sigma(a)$, then ϕ is a positive mapping from $S(\mathcal{M}, \tau)$ onto itself. Hence ϕ is self-adjoint, i.e. $\phi\left(a^{*}\right)=\phi(a)^{*}$, for every $a \in S(\mathcal{M}, \tau)$, and if $a \in \mathcal{M}$, we can deduce that $\phi(a) \in \mathcal{M}$. It follows that the restriction of ϕ on \mathcal{M}, denoted by $\left.\phi\right|_{\mathcal{M}}$, is a spectrum-preserving mapping. According to [10, Theorem 1.3], $\left.\phi\right|_{\mathcal{M}}$ is a Jordan isomorphism. By [18, Corollary 11], $\left.\phi\right|_{\mathcal{M}}$ is a $*$-isomorphism or a $*-$ anti-isomorphism. Hence $\left.\phi\right|_{\mathcal{M}}$ is normal. By [19, Theorem 4.9] and Proposition 3.5, $\left.\phi\right|_{\mathcal{M}}$ is continuous in measure topology. Let $h=h^{*} \in S(\mathcal{M}, \tau)$, by Proposition 3.4, h is the limit of a sequence of linear combinations of orthogonal idempotents Consequently, by [10, Theorem 1.2], $\phi(h)$ is the limit of a sequence of linear combinations of orthogonal idempotents. By continuity of ϕ, taking the limits of these sequences we conclude that $\phi\left(h^{2}\right)=\phi(h)^{2}$. Taking h, k self-adjoint in $S(\mathcal{M}, \tau)$ we get

$$
\begin{aligned}
(\phi(h+k))^{2} & =(\phi(h)+\phi(k))^{2}=\phi(h)^{2}+\phi(k)^{2}+\phi(h) \phi(k)+\phi(k) \phi(h) \\
& =\phi\left((h+k)^{2}\right)=\phi\left(h^{2}\right)+\phi\left(k^{2}\right)+\phi(h k+k h) .
\end{aligned}
$$

Thus $\phi(k h+k h)=\phi(h) \phi(k)+\phi(k) \phi(h)$, for every h, k self-adjoint elements. Let $x \in S(\mathcal{M}, \tau)$,
then $x=h+i k$ where $h=\left(x+x^{*}\right) / 2$ and $k=\left(x-x^{*}\right) / 2 i$ are self-adjoint elements. Hence

$$
\begin{aligned}
\phi\left(x^{2}\right) & =\phi\left(h^{2}-k^{2}+i(h k+k h)\right)=\phi\left(h^{2}\right)-\phi(k)^{2}+i(\phi(h) \phi(k)+\phi(k) \phi(h)) \\
& =(\phi(h)+i \phi(k))^{2}=\phi(x)^{2} .
\end{aligned}
$$

Hence, ϕ is a Jordan $*$-isomorphism. It follows that ϕ is a $*$-isomorphism or a $*$-antiisomorphism.

Theorem 3.7 Suppose that \mathcal{M} is a finite von Neumann algebra, and let ϕ be a spectrum-preserving linear mapping from $S(\mathcal{M}, \tau)$ onto itself. Then ϕ is a Jordan *isomorphism.

Proof In the proof, we need the [18, Theorem 10] instead of [18, Corollary 11]. The remainder of the proof is similar to that of Theorem 3.6.

References

[1] Ringrose J R. Automatic continuity of derivations of operator algebras[J]. J Lond Math Soc, II Ser., 1972, 5(2): 432-438.
[2] Sakai S. C^{*}-algebras and W^{*}-algebras[M]. Berlin: Springer, 1998.
[3] Ayupov S, Kudaybergenov K, Peralta A M. A survey on local and 2-local derivations on C^{*}-algebras and von Neumann algebras[A]. Russo B, Aksoy A G, Ashurov R, Ayupov S. Topics in functional analysis and algebra[C]. Providence, RI: American Mathematical Society (AMS), 2016, 73-126.
[4] Essaleh A B A, Peralta A M. Linear maps on C^{*}-algebras which are derivations or triple derivations at a point[J]. Linear Algebra Appl., 2018, 538: 1-21.
[5] Essaleh A B A, Peralta A M. A linear preserver problem on maps which are triple derivable at orthogonal pairs[J]. Rev R Acad Cienc Exactas Fís Nat, Ser A Mat, RACSAM., 2021, 115(3): 146-177.
[6] Alaminos J, Brešar M, Extremera J, Villena A R. Maps preserving zero products[J]. Studia Math., 2009, 193(2): 131-159.
[7] Brešar M. Characterizations of derivations on some normed algebras with involution[J]. J Algebra, 1992, 152(2): 454-462.
[8] Brešar M, Šemrl P. Mappings which preserve idempotents, local automorphisms, and local derivations[J]. Can J Math., 1993, 45(3): 483-496.
[9] Frobenius G. Ueber die Darstellung der endlichen Gruppen durch lineare Substitutionen[J]. Berl Ber., 1897, 994-1015.
[10] Aupetit B. Spectrum-preserving linear mappings between Banach algebras or Jordan-Banach algebras[J]. J Lond Math Soc., 2000, 62(3): 917-924.
[11] Ho T, Martinez-Moreno J, Peralta A M, Russo B. Derivations on real and complex $J B^{*}$-triples[J]. J Lond Math Soc., 2002, 65(2): 85-102.
[12] Burgos M, Fernández-Polo F J, Garcés J J, Martínez Moreno J, Peralta A M. Orthogonality preservers in C^{*}-algebras, $J B^{*}$-algebras and $J B^{*}$-triples[J]. J Math Anal Appl., 2008, 348(1): 220-233.
[13] Burgos M, Fernández-Polo F J, Garcés J J, Peralta A M. Orthogonality preservers revisited[J]. Asian-Eur J Math., 2009, 2(3): 387-405.
［14］Burgos M，Fernández－Polo F J，Garcés J J，Peralta A M．Local triple derivations on C^{*}－algebras［J］． Commun Algebra，2014，42（3）：1276－1286．
［15］Burgos M，Fernández－Polo F J，Peralta A M．Local triple derivations on C^{*}－algebras and $J B^{*}$－ triples［J］．Bull Lond Math Soc．，2014，46（4）：709－724．
［16］Goldstein S，Labuschagne L．Notes on noncommutative L^{p} and Orlicz spaces［M］．Łódź：Łódź Uni－ versity Press， 2020.
［17］Kadison R V，Ringrose J R．Fundamentals of the theory of operator algebras．Vol．I：Elementary theory．2nd printing with correct［M］，vol 15．Providence，RI：American Mathematical Society， 1997.
［18］Kadison R V．Isometries of operator algebras［J］．Ann Math．，1951，54（2）：325－338．
［19］Nayak S．On Murray－von Neumann algebras．I：Topological，order－theoretic and analytical as－ pects［J］．Banach J Math Anal．，2021，15（3）：45－85．

几类保持映射的刻画

潘绍泽，苏珊珊
（华东理工大学数学学院，上海 200237）

摘要：本文研究了一类三元组正交保持的线性映射并刻画了保持 τ－可测算子谱的线性映射．我们在更弱的条件下利用性质 \mathbb{B} 刻画了保持三元组正交的线性映射，获得了这类映射是广义的Jordan导子的结果。对于保持 τ－可测算子谱的线性映射研究，我们将有界算子中保谱的结果推广到无界算子．

关键词：C^{*}－代数；导子；性质 \mathbb{B} ；谱
MR（2010）主题分类号：47B49；46L57；46H40；47A10 中图分类号：O177．5；O177．7

[^0]: ＊Received date：2023－02－15 Accepted date：2023－03－30
 Foundation item：Supported by National Natural Science Foundation of China（11871021）．
 Biography：Pan Shaoze（1993－），male，born at Jinan，postgraduate，major in operator theory and operator algebra．E－mail：panshaoze684＠gmail．com．

