Vol. 44 (2024) No. 1

CHARACTERIZATIONS OF SEVERAL CLASSES OF PRESERVERS

PAN Shao-ze, SU Shan-shan

(School of Mathematics, East China University of Science and Technology, Shanghai 200237, China)

Abstract: In this paper, we study a class of linear mappings that triple orthogonality preservers and characterize those linear mappings that preserve the spectrum on algebras of τ -measurable operators. First, we use the property \mathbb{B} to characterize linear mappings that triple orthogonality preservers under slightly weaker assumptions, and obtain that such mappings are generalized Jordan derivations. For the study of linear mappings which preserve the τ -measurable operator spectrum, the result of spectrum-preserving in bounded operators is extended to unbounded operators.

 Keywords:
 C*-algebra; derivation; property B; spectrum

 2010 MR Subject Classification:
 47B49; 46L57; 46H40; 47A10

 Document code:
 A

 Article ID:
 0255-7797(2024)01-0047-12

1 Introduction

Throughout this paper all algebras and vector spaces are over the complex field \mathbb{C} , and all algebras are associative with unity, unless indicated otherwise. Suppose that \mathcal{A} is a complex Banach *-algebra, and \mathcal{X} is a Banach \mathcal{A} -bimodule. We recall that a linear mapping $D: \mathcal{A} \to \mathcal{X}$ is a derivation whenever D(ab) = D(a)b + aD(b), for every $a, b \in \mathcal{A}$. J. Ringrose [1] extends S. Sakai's theorem [2] on automatic continuity of derivations on C^* -algebras by proving that every derivation from a C^* -algebra \mathcal{A} to a Banach \mathcal{A} -bimodule is continuous.

In Section 2, we first consider a mapping T from an algebra \mathcal{A} into an \mathcal{A} -bimodule \mathcal{X} that satisfies the following conditions:

$$ab = bc = 0 \Rightarrow aT(b)c + cT(b)a = 0,$$

and we give several applications of the conclusion.

Our results can be considered as extensions of some of the results in [3] and [4, 5] to more general classes of Banach algebras, as well as new applications of property \mathbb{B} in the sense of [6] for new types of preservers, and complementary results for [7, 8].

Spectrum-preserving linear mappings are studied for the first time by G. Frobenius [9]. In [10], B. Aupetit studies spectrum-preserving mappings on von Neumann algebras. In

^{*} Received date: 2023-02-15 Accepted date: 2023-03-30

Foundation item: Supported by National Natural Science Foundation of China (11871021).

Biography: Pan Shaoze(1993–), male, born at Jinan, postgraduate, major in operator theory and operator algebra. E-mail: panshaoze684@gmail.com.

Section 3, we shall consider the spectrum-preserving mappings on algebras of τ -measurable operators, which is a version of a theorem known for von Neumann algebras, but dealing with algebras of unbounded opeators. Theorem 3.6 deals with a factor of type II_1 and Theorem 3.7 with a finite von Neumann algebra. We prove such a mapping is a Jordan *-isomorphism.

2 Linear preserving mappings

We recall that a linear mapping G from a Banach algebra \mathcal{A} into a Banach \mathcal{A} -bimodule \mathcal{X} is said to be a generalized derivation if there exists $\xi \in \mathcal{X}^{**}$ satisfying

$$G(ab) = G(a)b + aG(b) - a\xi b, (a, b \in \mathcal{A}).$$

We shall say that a linear mapping G from a C^* -algebra \mathcal{A} into a Banach \mathcal{A} -bimodule \mathcal{X} is a Jordan derivation if $G(a \circ b) = G(a) \circ b + a \circ G(b)$ for every $a, b \in \mathcal{A}$, where the Jordan product is given by $a \circ b := \frac{1}{2}(ab + ba)$. G is called a generalized Jordan derivation if there exists $\xi \in \mathcal{X}^{**}$ such that the identity $G(a \circ b) = G(a) \circ b + a \circ G(b) - U_{a,b}(\xi)$, holds for every a, b in \mathcal{A} , where $U_{a,b}(z) := (a \circ z) \circ b + (b \circ z) \circ a - (a \circ b) \circ z$. If \mathcal{A} is unital, every generalized (Jordan) derivation $D : \mathcal{A} \to \mathcal{X}$ with D(1) = 0 is a (Jordan) derivation, where $U_{a,b}(x) := \frac{1}{2}(axb + bxa)$.

We recall that every C^* -algebra is a JB^* -triple with respect to $\{a, b, c\} = \frac{1}{2}(ab^*c+cb^*a)$. Whenever we use a triple product on a C^* -algebra, it is always this triple product. More details about JB^* -triple can be found in [11].

We recall that elements a, b in a JB^* -triple \mathcal{E} are said to be *orthogonal* $(a \perp b$ for short) if L(a, b) = 0, where L(a, b) is the operator on \mathcal{E} given by $L(a, b)x = \{a, b, x\}$. By [12, Lemma 1], we know that

$$a \perp b \Leftrightarrow \{a, a, b\} = 0 \Leftrightarrow \{b, b, a\} = 0.$$

When a C^* -algebra \mathcal{A} is regarded as a JB^* -triple, it is known that elements a, b in \mathcal{A} are orthogonal if and only if $ab^* = 0 = b^*a$ ([13]). When \mathcal{A} is a commutative C^* -algebra, $a \perp b$ if and only if ab = 0.

A complex Banach algebra \mathcal{A} is said to have property \mathbb{B} if for every continuous bilinear mapping $f : \mathcal{A} \times \mathcal{A} \to \mathcal{X}$ where \mathcal{X} is an arbitrary Banach space, the condition that for all $x, y \in \mathcal{A}$,

$$xy = 0 \Rightarrow f(x, y) = 0,$$

implies that

$$f(xy, z) = f(x, yz)$$
 for all $x, y, z \in \mathcal{A}$.

It is shown in [6] that many important examples of Banach algebras, including C^* -algebras and group algebras $L^1(G)$ where G is a locally compact group, have property \mathbb{B} . (

Recently, A. Essaleh and A. Peralta consider in [5] a linear preserver problem on maps which are triple derivable at orthogonal pairs. In this paper, we consider a weaker condition than that in [5].

In what follows, we denote by \mathcal{A}_{sa} the hermitian elements of a Banach *-algebra \mathcal{A} .

Before giving the next lemma, we first give the following definition, which appears in [4].

Definition 2.1 Let $T : \mathcal{A} \to \mathcal{A}$ be a linear mapping on a C^* -algebra \mathcal{A} , and let z be an element in \mathcal{A} . We shall say that T is a triple derivation at z if $z = \{a, b, c\}$ in \mathcal{A} implies that

$$T(z) = \{T(a), b, c\} + \{a, T(b), c\} + \{a, b, T(c)\}.$$

Lemma 2.1 Suppose that \mathcal{A} is a unital C^* -algebra. Let $T : \mathcal{A} \to \mathcal{A}$ be a linear mapping satisfying

$$a \perp b \perp c \Rightarrow \{a, T(b), c\} = 0.$$

Then the identity

$$T(p) = pT(p) + T(p)p - pT(1)p$$
(2.1)

holds for every idempotent p in \mathcal{A} .

Proof Let $a = p, b = 1 - p^*, c = p$, where $p^2 = p$ in \mathcal{A} . According to the hypothesis, we have $pT(1-p^*)^*p = \{p, T(1-p^*), p\} = 0$, which gives $pT(1)^*p = pT(p^*)^*p$. By applying * to both sides, we get $p^*T(1)p^* = p^*T(p^*)p^*$ for every idempotent p in \mathcal{A} . But p^* is an idempotent, so

$$pT(1)p = pT(p)p$$

By a similar method, let $a = 1 - p^*, b = p, c = 1 - p^*$. Then $(1 - p^*)T(p)^*(1 - p^*) = 0$, so

$$T(p) = pT(p) + T(p)p - pT(p)p.$$

Since pT(1)p = pT(p)p,

$$T(p) = pT(p) + T(p)p - pT(1)p.$$

Definition 2.2 A Banach \mathcal{A} -bimodule \mathcal{M} is said to be essential if it is equal to the closed linear span of the set of elements of the form $x \cdot m \cdot y$ with $x, y \in \mathcal{A}, m \in \mathcal{M}$.

Definition 2.3 Let \mathcal{A} be a Banach algebra. A left approximate identity for \mathcal{A} is a net $\{\rho_i\}_{i \in I}$ in \mathcal{A} such that

$$\lim \rho_i x = x$$

for every $x \in \mathcal{A}$. A right approximate identity for \mathcal{A} is defined similarly. An approximate identity for \mathcal{A} is a net $\{\rho_i\}_{i \in I}$, which is both a left and a right approximate identity for

 \mathcal{A} . A (left/right) approximate identity $\{\rho_i\}_{i \in I}$ is bounded if for some positive K we have $\|\rho_i\| \leq K$ for every $i \in I$.

Next we give the following proposition, which plays a crucial role in our paper.

Proposition 2.1 Suppose that \mathcal{A} is a Banach algebra satisfying property \mathbb{B} and having a bounded approximate identity $\{\rho_i\}_{i \in I}$. Let \mathcal{M} be an essential Banach \mathcal{A} -bimodule, and let $T : \mathcal{A} \to \mathcal{M}$ be a continuous linear mapping satisfying

$$ab = bc = 0 \Rightarrow aT(b)c + cT(b)a = 0.$$
(2.2)

Then T is a generalized Jordan derivation.

Proof Fix $a, b \in \mathcal{A}$ with ab = 0. Define a continuous bilinear map $\varphi : \mathcal{A} \times \mathcal{A} \to \mathcal{M}$ given by

$$\varphi(x,y) = aT(bx)y + yT(bx)a.$$

When xy = 0 in \mathcal{A} , we have abx = 0 = bxy. Hence $\varphi(x, y) = 0$ whenever $ab = 0, a, b \in \mathcal{A}$. According to the hypothesis

$$\varphi(xy,z) = \varphi(x,yz)$$

for any $x, y, z \in \mathcal{A}$, that is,

$$aT(bxy)z + zT(bxy)a = aT(bx)yz + yzT(bx)a,$$

for all $x, y, z, a, b \in \mathcal{A}$ with ab = 0. Fix $x, y, z \in \mathcal{A}$ and define a continuous bilinear mapping on \mathcal{A} by

$$\Phi(a,b) = aT(bxy)z + zT(bxy)a - aT(bx)yz + yzT(bx)a.$$

Hence, ab = 0 in \mathcal{A} implies $\Phi(a, b) = 0$. It follows from the hypothesis on \mathcal{A} that

$$\Phi(ab,c) = \Phi(ab,c)$$

for any $a, b, c \in \mathcal{A}$, that is,

$$abT(cxy)z + zT(cxy)ab - abT(cx)yz - yzT(cx)ab$$
$$= aT(bcxy)z + zT(bcxy)a - aT(bcx)yz - yzT(bcx)a$$

for all $x, y, z, a, b, c \in \mathcal{A}$.

First let $a = \rho_i$, we get

$$\rho_i bT(cxy)z + zT(cxy)\rho_i b - \rho_i bT(cx)yz - yzT(cx)\rho_i b$$
$$= \rho_i T(bcxy)z + zT(bcxy)\rho_i - \rho_i T(bcx)yz - yzT(bcx)\rho_i$$

which converges to

$$bT(cxy)z + zT(cxy)b - bT(cx)yz - yzT(cx)b$$

$$= T(bcxy)z + zT(bcxy) - T(bcx)yz - yzT(bcx)$$

with respect to the norm topology. On the other hand, let $x = \rho_i$, we get

$$bT(c\rho_i y)z + zT(c\rho_i y)b - bT(c\rho_i)yz - yzT(c\rho_i)b$$
$$= T(bc\rho_i y)z + zT(bc\rho_i y) - T(bc\rho_i)yz - yzT(bc\rho_i).$$

which converges to

$$bT(cy)z + zT(cy)b - bT(c)yz - yzT(c)b$$
$$= T(bcy)z + zT(bcy) - T(bc)yz - yzT(bc)$$

with respect to the norm topology.

In the next steps, we consider $z = \rho_i, c = \rho_i$. Since T is a bounded linear mapping, $\{\rho_i\}_{i \in I}$ is bounded, $\{T\rho_i\}_{i \in I}$ is bounded too, and we can assume that $\{T\rho_i\}_{i \in I}$ converges to an element ξ in \mathcal{M}^{**} with respect to the w^* -topology, then $\{y \cdot T(\rho_i) \cdot b\}_{i \in I}$ converges to $y \cdot \xi \cdot b$ with respect to the w^* -topology. Hence

$$2T(by) = T(b)y + bT(y) + T(y)b + yT(b) - y\xi b - b\xi y.$$

Since the right-hand-side of the above identity is symmetric on b and y, we deduce that T(by) = T(yb).

$$T(by + yb) = T(b)y + yT(b) + T(y)b + bT(y) - y\xi b - b\xi y.$$

Hence T is a generalized Jordan derivation.

Corollary 2.2 Suppose that \mathcal{A} is a commutative Banach algebra with the property \mathbb{B} and having a bounded approximate identity $\{\rho_i\}_{i \in I}$. Let \mathcal{M} be an essential Banach \mathcal{A} -bimodule. Then the following conditions are equivalent:

(1) $T: \mathcal{A} \to \mathcal{M}$ is a generalized Jordan derivation;

(2) aT(b)c + cT(b)a = 0 when $ab = bc = 0, a, b, c \in \mathcal{A}$.

Proof $(2) \Rightarrow (1)$ is clear from Proposition 2.1.

(1) \Rightarrow (2) If T is a generalized Jordan derivation, then $T(b) = d(b) + \xi b$, for any $b \in \mathcal{A}$, where d is a Jordan derivation from \mathcal{A} to $\mathcal{M}^{**}, \xi \in \mathcal{M}^{**}$. Hence

$$aT(b)c + cT(b)a = a(d(b) + \xi b)c + c(d(b) + \xi b)a.$$

For the Jordan derivations d, we have

$$d(abc + cba) = d(a)bc + ad(b)c + abd(c) + d(c)ba + cd(b)a + cbd(a)$$

for every a, b, c in \mathcal{A} . Hence, by the commutativity of \mathcal{A} , we get

$$ad(b)c + cd(b)a = 0$$

for all a, b, c with ab = bc = 0. By using the commutativity of \mathcal{A} , and $a\xi bc + c\xi ba = 0$. Hence

$$aT(b)c + cT(b)a = 0$$

when $ab = bc = 0, a, b, c \in \mathcal{A}$. The proof is completed.

Suppose that \mathcal{A} is a *-algebra, an \mathcal{A} -bimodule \mathcal{M} is called an \mathcal{A} -*-bimodule if \mathcal{M} is equipped with a *-mapping from \mathcal{M} into itself, such that

$$(\alpha m + \beta n)^* = \overline{\alpha} m^* + \overline{\beta} n^*, (am)^* = m^* a^*, (ma)^* = a^* m^* \text{ and } (m^*)^* = m$$

whenever a in \mathcal{A}, m, n in \mathcal{M} and α, β in \mathbb{C} .

Corollary 2.3 Suppose that \mathcal{A} is a commutative Banach *-algebra with property \mathbb{B} and having a bounded approximate identity $\{\rho_i\}_{i \in I}$, \mathcal{M} is an essential Banach \mathcal{A} -*-bimodule. Let T be a continuous linear mapping from \mathcal{A} to \mathcal{M} which satisfies

$$aT(b)^*c + cT(b)^*a = 0$$

whenever $a, b, c \in \mathcal{A}$ with $a \perp b \perp c$. Then T is a generalized Jordan derivation.

Proof If \mathcal{A} is commutative, $a \perp b \perp c$ is equivalent to $ab^* = b^*c = 0$. Let $d = b^*$, then the conditions in the corollary can be replaced by

$$ad = dc = 0 \Rightarrow aT(d^*)^*c + cT(d^*)^*a = 0.$$

By defining $\tau(d) = T(d^*)^*$, we get that

$$a\tau(d)c + c\tau(d)a = 0,$$

when ad = dc = 0. So, we can apply Corollary 2.2 to deduce that τ is a generalized Jordan derivation. Hence, according to the definition of τ , T is a generalized Jordan derivation.

Remark 1 We can not deduce that T is a symmetric mapping or a *-mapping. If T is a inner derivation, it satisfies the above equation. However there are inner derivations which are not *-derivations. In particular, T need not to be a local triple derivation, since each local triple derivation preserves the adjoint ([14, Lemma 9]).

We give the following results which contain some new generalizations of [15, Proposition 3.4], [3, Theorem 2.11], [4, Lemma 2.8] with slightly weaker hypotheses.

Theorem 2.4 Suppose that \mathcal{A} is a C^* -algebra, and let $T : \mathcal{A} \to \mathcal{A}$ be a bounded linear mapping. Then the following statements are equivalent:

(1) $\{a, T(b), c\} = 0$, when $a \perp b \perp c, a, b, c \in \mathcal{A}$;

(2) T is a generalized derivation.

Proof (1) \Rightarrow (2). If $a, b, c \in \mathcal{A}_{sa}$ and ab = bc = 0. Hence $ab^* = b^*a = 0, bc^* = c^*b = 0$. So we obtain

$$aT(b)^*c + cT(b)^*a = 0.$$

Then applying * to both sides. We get

$$aT(b)c + cT(b)a = 0.$$

By [4], so T is a generalized derivation.

(2) \Rightarrow (1). By the definition of generalized derivation, $T(b) = D(b) + \xi b$ for all $b \in \mathcal{A}$, where D is a derivation from \mathcal{A} to \mathcal{A}^{**} , $\xi \in \mathcal{A}^{**}$. If $ab^* = b^*a = 0, b^*c = cb^* = 0$, $D(a^*b) = D(a^*)b + a^*D(b) = 0$, then

$$b^*D(a^*)^* + D(b)^*a = 0, \ cb^*D(a^*)^* + cD(b)^*a = 0,$$

 \mathbf{SO}

$$cD(b)^*a = 0.$$

By a similar calculation,

$$aD(b)^*c = 0.$$

So

$$aT(b)^*c + cT(b)^*a = a(D(b)^* + b^*\xi^*)c + c(D(b)^* + b^*\xi^*)a =$$
$$aD(b)^*c + ab^*\xi^*c + cD(b)^*a + cb^*\xi^*a = 0.$$

Hence T satisfies (1).

Before proving the next main result, we give the following lemma whose proof is contained in the proof of [3, Theorem 2.1].

Lemma 2.5 Suppose that \mathcal{A} is a C^* -algebra, \mathcal{M} is a Banach \mathcal{A} -bimodule, and let T be a linear mapping from \mathcal{A} to \mathcal{M} . If there exists a $\xi \in \mathcal{M}^{**}$ such that T satisfies

$$T(a^2) = T(a)a + aT(a) - a\xi a,$$

for all $a \in \mathcal{A}_{sa}$, then T is a generalized Jordan derivation.

Proposition 2.2 Suppose that \mathcal{A} is a C^* -algebra, \mathcal{M} is an essential Banach \mathcal{A} -*-bimodule, and let $T : \mathcal{A} \to \mathcal{M}$ be a bounded linear mapping satisfying the following conditions:

$$aT(b)^*c + cT(b)^*a = 0, \ a \perp b \perp c, \ a, b, c \in \mathcal{A}.$$
 (2.3)

Then T is a generalized Jordan derivation.

Proof Let \mathcal{B} denote the abelian C^* -subalgebra of \mathcal{A} generated by a self-adjoint element a of \mathcal{A} . According to Corollary 2.3, we see that $T|_{\mathcal{B}} : \mathcal{B} \to \mathcal{M}$ is a generalized Jordan derivation. Hence

$$T(a^2) = T(a)a + aT(a) - a\xi a$$

where $\xi \in \mathcal{M}^{**}$. For any $a \in \mathcal{A}$, $a = a_1 + ia_2$, where $a_1, a_2 \in \mathcal{A}_{sa}$, according to Lemma 2.5, we obtain that

$$T(ab+ba) = T(a)b + aT(b) + T(b)a + bT(a) - a\xi b - b\xi a$$

for any $a, b \in \mathcal{A}$. So T is a generalized Jordan derivation.

We conclude this section with some results about homomorphisms.

Definition 2.4 Let \mathcal{A} and \mathcal{B} be Banach algebras. A Jordan homomorphism from \mathcal{A} into \mathcal{B} is a linear mapping $T : \mathcal{A} \to \mathcal{B}$ such that

$$T(a \circ b) = T(a) \circ T(b) \ (a, b \in \mathcal{A}),$$

where the symbol \circ denotes the Jordan product on \mathcal{A} , i.e.

$$a \circ b = \frac{1}{2}(ab + ba) \ (a, b \in \mathcal{A}).$$

We make full use of the powerful property \mathbb{B} to characterize homomorphisms on unital Banach algebras satisfying this property.

Proposition 2.3 Suppose that \mathcal{A} is a unital Banach algebra satisfying the property \mathbb{B} , let $T : \mathcal{A} \to \mathcal{A}$ be a continuous linear mapping satisfying

$$ab = bc = 0 \Rightarrow T(a)T(b)T(c) + T(c)T(b)T(a) = 0.$$

If T(1) = 1, then T is a Jordan homomorphism.

Proof Fix $a, b \in \mathcal{A}$ with ab = 0. Define a continuous bilinear mapping

$$\varphi: \mathcal{A} \times \mathcal{A} \to \mathcal{A},$$

such that

$$\varphi(x, y) = T(a)T(bx)T(y) + T(y)T(bx)T(a).$$

When xy = 0, we have abx = 0 = bxy. Hence $\varphi(x, y) = 0$, when $xy = 0, a, b \in \mathcal{A}$. By property \mathbb{B} ,

$$\varphi(x,1) = \varphi(1,x),$$

for any $x \in \mathcal{A}$, that is, T(a)T(bx) + T(bx)T(a) = T(a)T(b)T(x) + T(x)T(b)T(a).

Define a continuous bilinear mapping given by

$$\Phi(a,b) = aT(bx) + T(bx)a - aT(b)x - xT(b)a.$$

By the previous paragraph, $ab = 0 \Rightarrow \Phi(a, b) = 0$. So, by property \mathbb{B} , we get

$$\Phi(a,1) = \Phi(1,a),$$

for any $a \in \mathcal{A}$.

 So

$$T(a)T(x) + T(x)T(a) - T(a)T(1)T(x) - T(x)T(1)T(a)$$

= $T(ax) + T(ax) - T(a)T(x) - T(x)T(a)$,

i.e.

$$2T(ax) = T(a)T(x) + T(a)T(x) + T(x)T(a) + T(x)T(a) - T(a)T(1)T(x) - T(x)T(1)T(a).$$

Since T(ax) = T(xa) and T(1) = 1,

$$T(ax + xa) = T(a)T(x) + T(a)T(x).$$

Hence T is a Jordan homomorphism.

3 Spectrum-preserving mappings

Let \mathcal{M} be a semifinite von Neumann algebra with a faithful semifinite normal trace τ acting on a Hilbert space \mathcal{H} . We denote by $\mathcal{P}(\mathcal{M})$ the collection of all projections in \mathcal{M} , by $S(\mathcal{M}, \tau)$ the collection of all τ -measurable operators with respect to \mathcal{M} . More details about τ -measurable operators can be found in [16].

We recall the definition of the measure topology t_{τ} on the algebra $S(\mathcal{M}, \tau)$. For every $\epsilon, \delta > 0$, we define the set

$$U(\epsilon, \delta) = \{ X \in S(\mathcal{M}, \tau) : \text{ there exists } P \in \mathcal{P}(\mathcal{M}) \text{ such that } \|X(I-P)\| \le \epsilon, \tau(P) \le \delta \}.$$

The topology generated by the sets $U(\epsilon, \delta), \epsilon, \delta > 0$, is called the measure topology t_{τ} on $S(\mathcal{M}, \tau)$. It is well known that the algebra $S(\mathcal{M}, \tau)$ equipped with the measure topology is a complete metrizable topological algebra.

Definition 3.5 Suppose that T is a closed densely defined linear operator on a Hilbert space \mathcal{H} with domain D(T). The spectrum $\sigma(T)$ of T is the set of those complex numbers λ such that $T - \lambda I$ is not a one-to-one mapping of D(T) onto \mathcal{H} .

Definition 3.6 Suppose that \mathcal{A}, \mathcal{B} are algebras over the complex filed \mathbb{C} , and ϕ is a linear mapping from \mathcal{A} to \mathcal{B} . If ϕ satisfies $\sigma(\phi(a)) = \sigma(a)$, for every $a \in \mathcal{A}$, we shall say ϕ is a spectrum-preserving linear mapping.

Proposition 3.4 If $h = h^* \in S(\mathcal{M}, \tau)$, then h is the limit of a sequence of linear combinations of mutually orthogonal projections in measure topology $(S(\mathcal{M}, \tau) = \overline{\mathcal{P}(\mathcal{M})}^{t_{\tau}})$.

Proof By [17, Theorem 5.6.18], h is affiliated with an abelian von Neumann subalgebra \mathcal{R} of \mathcal{M} . Hence h belongs to the $S(\mathcal{R}, \tau|_{\mathcal{R}})$. For an abelian von Neumann algebra, it is well known that \mathcal{R} can be uniformly approximated by finite linear combinations of mutually orthogonal projections ([2, Proposition1.3.1 and Lemma 1.7.5]) i.e. $\mathcal{R} = \overline{\mathcal{P}(\mathcal{R})}^{\|\cdot\|}$. With the consideration that $S(\mathcal{R}, \tau|_{\mathcal{R}}) = \overline{\mathcal{R}}^{t_{\tau|_{\mathcal{R}}}}$, it follows that $S(\mathcal{R}, \tau|_{\mathcal{R}}) = \overline{\mathcal{P}(\mathcal{R})}^{\|\cdot\|} = \overline{\mathcal{P}(\mathcal{R})}^{t_{\tau|_{\mathcal{R}}}}$. Hence for any $h = h^* \in S(\mathcal{M}, \tau)$, there exists a von Neumann subalgebra \mathcal{R} of \mathcal{M} such that $h \in \overline{\mathcal{P}(\mathcal{R})}^{t_{\tau|_{\mathcal{R}}}}$.

Proposition 3.5 Let \mathcal{M}_1 and \mathcal{M}_2 be finite von Neumann algebras, and $\Phi : \mathcal{M}_1 \to \mathcal{M}_2$ be a unital *-anti-homomorphism. If Φ is normal, then Φ is Cauchy-continuous for the measure topologies on \mathcal{M}_1 and \mathcal{M}_2 .

Proof Let τ_2 be a normal tracial state on \mathcal{M}_2 . Since Φ is normal, we note that $\tau_1 := \tau_2 \circ \Phi$ is a normal tracial state on \mathcal{M}_1 . For $\epsilon, \delta > 0$, $A \in U(\tau_1, \epsilon, \delta)$, there is a projection E in \mathcal{M}_1 such that $||AE|| \leq \epsilon$ and $\tau_1(I - E) \leq \delta$. First we note that if Φ is a *-anti-homomorphism, then $\Phi(F)\Phi(A)\Phi(E) = \Phi(EAF)$ for any $A, E, F \in \mathcal{M}_1$, and $\Phi(E)$ is a projection if E is a projection.

Let $E \in \mathcal{P}(\mathcal{M}_1), A \in \mathcal{M}_1$,

$$\begin{split} \|\Phi(A)\Phi(E)\| &= \|(1-\Phi(E))\Phi(A)\Phi(E) + \Phi(E)\Phi(A)\Phi(E)\| \\ &\leq \|(1-\Phi(E))\Phi(A)\Phi(E)\| + \|\Phi(E)\Phi(A)\Phi(E)\| \\ &= \|\Phi(EA(1-E))\| + \|\Phi(EAE)\| \\ &\leq \|AE(1-E)\| + \|EAE\| \\ &\leq 2\|AE\| \\ &\leq 2\epsilon, \end{split}$$

and $\tau_2(1 - \Phi(E)) = \tau_1(I - E) \leq \delta$. Consequently,

$$\Phi(U(\tau_1,\epsilon,\delta)) \subseteq U(\tau_2,2\epsilon,\delta).$$

Thus if a net $\{A_i\}$ in \mathcal{M}_1 is Cauchy in measure topology, then the net $\{\Phi(A_i)\}$ in \mathcal{M}_2 is also Cauchy in measure topology. We conclude that Φ is Cauchy-continuous for the measure topologies on \mathcal{M}_1 and \mathcal{M}_2 .

Theorem 3.6 Suppose that \mathcal{M} is a factor of type II_1 , and let ϕ be a spectrumpreserving linear mapping from $S(\mathcal{M}, \tau)$ onto itself. Then ϕ is a *-isomorphism or a *-antiisomorphism.

Proof It can be easily seen that if ϕ satisfies $\sigma(\phi(a)) = \sigma(a)$, then ϕ is a positive mapping from $S(\mathcal{M}, \tau)$ onto itself. Hence ϕ is self-adjoint, i.e. $\phi(a^*) = \phi(a)^*$, for every $a \in S(\mathcal{M}, \tau)$, and if $a \in \mathcal{M}$, we can deduce that $\phi(a) \in \mathcal{M}$. It follows that the restriction of ϕ on \mathcal{M} , denoted by $\phi|_{\mathcal{M}}$, is a spectrum-preserving mapping. According to [10, Theorem 1.3], $\phi|_{\mathcal{M}}$ is a Jordan isomorphism. By [18, Corollary 11], $\phi|_{\mathcal{M}}$ is a *-isomorphism or a *anti-isomorphism. Hence $\phi|_{\mathcal{M}}$ is normal. By [19, Theorem 4.9] and Proposition 3.5, $\phi|_{\mathcal{M}}$ is continuous in measure topology. Let $h = h^* \in S(\mathcal{M}, \tau)$, by Proposition 3.4, h is the limit of a sequence of linear combinations of orthogonal idempotents Consequently, by [10, Theorem 1.2], $\phi(h)$ is the limit of a sequence of linear combinations of orthogonal idempotents. By continuity of ϕ , taking the limits of these sequences we conclude that $\phi(h^2) = \phi(h)^2$. Taking h, k self-adjoint in $S(\mathcal{M}, \tau)$ we get

$$\begin{split} (\phi(h+k))^2 &= (\phi(h) + \phi(k))^2 = \phi(h)^2 + \phi(k)^2 + \phi(h)\phi(k) + \phi(k)\phi(h) \\ &= \phi((h+k)^2) = \phi(h^2) + \phi(k^2) + \phi(hk+kh). \end{split}$$

Thus $\phi(kh+kh) = \phi(h)\phi(k)+\phi(k)\phi(h)$, for every h, k self-adjoint elements. Let $x \in S(\mathcal{M}, \tau)$,

then x = h + ik where $h = (x + x^*)/2$ and $k = (x - x^*)/2i$ are self-adjoint elements. Hence

$$\phi(x^2) = \phi(h^2 - k^2 + i(hk + kh)) = \phi(h^2) - \phi(k)^2 + i(\phi(h)\phi(k) + \phi(k)\phi(h))$$

= $(\phi(h) + i\phi(k))^2 = \phi(x)^2$.

Hence, ϕ is a Jordan *-isomorphism. It follows that ϕ is a *-isomorphism or a *-anti-isomorphism.

Theorem 3.7 Suppose that \mathcal{M} is a finite von Neumann algebra, and let ϕ be a spectrum-preserving linear mapping from $S(\mathcal{M}, \tau)$ onto itself. Then ϕ is a Jordan *-isomorphism.

Proof In the proof, we need the [18, Theorem 10] instead of [18, Corollary 11]. The remainder of the proof is similar to that of Theorem 3.6.

References

- Ringrose J R. Automatic continuity of derivations of operator algebras[J]. J Lond Math Soc, II Ser., 1972, 5(2): 432–438.
- [2] Sakai S. C^* -algebras and W^* -algebras[M]. Berlin: Springer, 1998.
- [3] Ayupov S, Kudaybergenov K, Peralta A M. A survey on local and 2-local derivations on C^{*}-algebras and von Neumann algebras[A]. Russo B, Aksoy A G, Ashurov R, Ayupov S. Topics in functional analysis and algebra[C]. Providence, RI: American Mathematical Society (AMS), 2016, 73–126.
- [4] Essaleh A B A, Peralta A M. Linear maps on C*-algebras which are derivations or triple derivations at a point[J]. Linear Algebra Appl., 2018, 538: 1–21.
- [5] Essaleh A B A, Peralta A M. A linear preserver problem on maps which are triple derivable at orthogonal pairs[J]. Rev R Acad Cienc Exactas Fís Nat, Ser A Mat, RACSAM., 2021, 115(3): 146–177.
- [6] Alaminos J, Brešar M, Extremera J, Villena A R. Maps preserving zero products[J]. Studia Math., 2009, 193(2): 131–159.
- [7] Brešar M. Characterizations of derivations on some normed algebras with involution[J]. J Algebra, 1992, 152(2): 454–462.
- Brešar M, Šemrl P. Mappings which preserve idempotents, local automorphisms, and local derivations[J]. Can J Math., 1993, 45(3): 483–496.
- [9] Frobenius G. Ueber die Darstellung der endlichen Gruppen durch lineare Substitutionen[J]. Berl Ber., 1897, 994–1015.
- [10] Aupetit B. Spectrum-preserving linear mappings between Banach algebras or Jordan-Banach algebras[J]. J Lond Math Soc., 2000, 62(3): 917–924.
- [11] Ho T, Martinez-Moreno J, Peralta A M, Russo B. Derivations on real and complex JB*-triples[J]. J Lond Math Soc., 2002, 65(2): 85–102.
- [12] Burgos M, Fernández-Polo F J, Garcés J J, Martínez Moreno J, Peralta A M. Orthogonality preservers in C^{*}-algebras, JB^{*}-algebras and JB^{*}-triples[J]. J Math Anal Appl., 2008, 348(1): 220–233.
- [13] Burgos M, Fernández-Polo F J, Garcés J J, Peralta A M. Orthogonality preservers revisited[J]. Asian-Eur J Math., 2009, 2(3): 387–405.

- [15] Burgos M, Fernández-Polo F J, Peralta A M. Local triple derivations on C*-algebras and JB*triples[J]. Bull Lond Math Soc., 2014, 46(4): 709–724.
- [16] Goldstein S, Labuschagne L. Notes on noncommutative L^p and Orlicz spaces[M]. Łódź: Łódź University Press, 2020.
- [17] Kadison R V, Ringrose J R. Fundamentals of the theory of operator algebras. Vol. I: Elementary theory. 2nd printing with correct[M], vol 15. Providence, RI: American Mathematical Society, 1997.
- [18] Kadison R V. Isometries of operator algebras[J]. Ann Math., 1951, 54(2): 325–338.
- [19] Nayak S. On Murray-von Neumann algebras. I: Topological, order-theoretic and analytical aspects[J]. Banach J Math Anal., 2021, 15(3): 45–85.

几类保持映射的刻画

潘绍泽,苏珊珊

(华东理工大学数学学院,上海 200237)

摘要: 本文研究了一类三元组正交保持的线性映射并刻画了保持τ-可测算子谱的线性映射. 我们在更弱的条件下利用性质 B·刻画了保持三元组正交的线性映射,获得了这类映射是广义的Jordan导子的结果. 对于保持τ-可测算子谱的线性映射研究,我们将有界算子中保谱的结果推广到无界算子.

关键词: C*-代数; 导子; 性质B; 谱 MR(2010)主题分类号: 47B49; 46L57; 46H40; 47A10 中图分类号: O177.5; O177.7