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Abstract: In this paper, we study a class of linear mappings that triple orthogonality
preservers and characterize those linear mappings that preserve the spectrum on algebras of 7-
measurable operators. First, we use the property B to characterize linear mappings that triple
orthogonality preservers under slightly weaker assumptions, and obtain that such mappings are
generalized Jordan derivations. For the study of linear mappings which preserve the T-measurable
operator spectrum, the result of spectrum-preserving in bounded operators is extended to un-
bounded operators.
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1 Introduction

Throughout this paper all algebras and vector spaces are over the complex field C,
and all algebras are associative with unity, unless indicated otherwise. Suppose that A is a
complex Banach *-algebra, and X is a Banach A-bimodule. We recall that a linear mapping
D : A — X is a derivation whenever D(ab) = D(a)b+ aD(b), for every a,b € A. J. Ringrose
[1] extends S. Sakai’s theorem [2] on automatic continuity of derivations on C*-algebras by
proving that every derivation from a C*-algebra A to a Banach A-bimodule is continuous.

In Section 2, we first consider a mapping 7' from an algebra A into an A-bimodule X

that satisfies the following conditions:
ab=bc=0= aT(b)c+ cI'(b)a =0,

and we give several applications of the conclusion.

Our results can be considered as extensions of some of the results in [3] and [4, 5] to
more general classes of Banach algebras, as well as new applications of property B in the
sense of [6] for new types of preservers, and complementary results for [7, 8].

Spectrum-preserving linear mappings are studied for the first time by G. Frobenius [9].

In [10], B. Aupetit studies spectrum-preserving mappings on von Neumann algebras. In
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Section 3, we shall consider the spectrum-preserving mappings on algebras of 7-measurable
operators, which is a version of a theorem known for von Neumann algebras, but dealing
with algebras of unbounded opeators. Theorem 3.6 deals with a factor of type Il; and
Theorem 3.7 with a finite von Neumann algebra. We prove such a mapping is a Jordan

x-isomorphism.
2 Linear preserving mappings

We recall that a linear mapping GG from a Banach algebra A into a Banach A-bimodule
X is said to be a generalized derivation if there exists £ € X'** satisfying

G(ab) = G(a)b+ aG(b) — a&b, (a,b € A).

We shall say that a linear mapping G from a C*-algebra A into a Banach A-bimodule X is
a Jordan derivation if G(a ob) = G(a) o b+ a o G(b) for every a,b € A, where the Jordan
product is given by a0 b := %(ab + ba). G is called a generalized Jordan derivation if there
exists £ € X** such that the identity G(a o b) = G(a) o b+ a o G(b) — U, 4(€), holds for
every a,b in A, where U, ;(z) :== (a0 z)ob+ (boz)oa— (aob)oz If Ais unital, every
generalized (Jordan) derivation D : A — X with D(1) = 0 is a (Jordan) derivation, where
Uap(x) := 3(azb+ bza).

We recall that every C*-algebra is a JB*-triple with respect to {a, b, c} = % (ab*c+cb*a).
Whenever we use a triple product on a C*-algebra, it is always this triple product. More
details about JB*-triple can be found in [11].

We recall that elements a,b in a JB*-triple £ are said to be orthogonal (a L b for
short) if L(a,b) = 0, where L(a,b) is the operator on £ given by L(a,b)z = {a,b,z}. By [12,
Lemma 1], we know that

albe{a,a,b=0%< {bba}=0.

When a C*-algebra A is regarded as a JB*-triple, it is known that elements a,b in A
are orthogonal if and only if ab* = 0 = b*a ([13]). When A is a commutative C*-algebra,
a L b if and only if ab = 0.

A complex Banach algebra A is said to have property B if for every continuous bilinear
mapping f : A x A — X where X is an arbitrary Banach space, the condition that for all
T,y € A,

ry=0= f(z,y) =0,

implies that

flxy,2z) = f(x,yz) forall z,y,z € A.

It is shown in [6] that many important examples of Banach algebras, including C*-algebras
and group algebras L'(G) where G is a locally compact group, have property B.
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Recently, A. Essaleh and A. Peralta consider in [5] a linear preserver problem on maps
which are triple derivable at orthogonal pairs. In this paper, we consider a weaker condition
than that in [5].

In what follows, we denote by A, the hermitian elements of a Banach x-algebra A.

Before giving the next lemma, we first give the following definition, which appears in
[4].

Definition 2.1 Let T': A — A be a linear mapping on a C*-algebra A, and let z be
an element in 4. We shall say that T is a triple derivation at z if z = {a,b,c} in A implies
that

T(z) ={T(a),b,c} +{a,T(b),c} + {a,b,T(c)}.

Lemma 2.1 Suppose that A is a unital C*-algebra. Let T : A — A be a linear
mapping satisfying

alblec={a,Tb),c}=0.

Then the identity

T(p) = pT'(p) + T(p)p — pT(L)p (2.1)
holds for every idempotent p in A.

Proof Let a=p,b=1-p* c=p, where p> = p in A. According to the hypothesis,
we have pT'(1 —p*)*p = {p, T (1 — p*),p} = 0, which gives pT'(1)*p = pT(p*)*p. By applying
% to both sides, we get p*T'(1)p* = p*T'(p*)p* for every idempotent p in A. But p* is an
idempotent, so

pT(1)p = pT(p)p.
By a similar method, let a =1 —p*,b=p,c =1 —p*. Then (1 — p*)T(p)*(1 —p*) =0, so
T(p) = pT(p) +T(p)p — pT(p)p-
Since pT'(1)p = pT'(p)p,

T(p) = pT'(p) +T(p)p — pT(1)p.

Definition 2.2 A Banach A-bimodule M is said to be essential if it is equal to the

closed linear span of the set of elements of the form x - m -y with z,y € A,m € M.

Definition 2.3 Let A be a Banach algebra. A left approximate identity for A is a
net {p;}icr in A such that

limp;x =2
(2

for every x € A. A right approximate identity for A is defined similarly. An approximate
identity for A is a net {p;}ics, which is both a left and a right approximate identity for
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A. A (left/right) approximate identity {p;}ier is bounded if for some positive K we have
llpil| < K for every i € I.

Next we give the following proposition, which plays a crucial role in our paper.

Proposition 2.1 Suppose that A is a Banach algebra satisfying property B and
having a bounded approximate identity {p;}:c;. Let M be an essential Banach .A-bimodule,

and let T : A — M be a continuous linear mapping satisfying
ab=bc=0= aT(b)c+ cT(b)a=0. (2.2)

Then T is a generalized Jordan derivation.

Proof Fix a,b € A with ab = 0. Define a continuous bilinear map ¢ : A x A — M
given by
o(x,y) = aT(bx)y + yT(bx)a.

When zy = 0 in A, we have abx = 0 = bzy. Hence p(z,y) = 0 whenever ab = 0,a,b € A.
According to the hypothesis
p(zy, 2) = ¢(x,y2)
for any x,y,z € A, that is,
aT (bxy)z + 2T (bxy)a = aT (bx)yz + yzT'(bx)a,

for all z,y, z,a,b € A with ab = 0. Fix x,y, z € A and define a continuous bilinear mapping
on A by
®(a,b) = aT(bxy)z + 2T (bxy)a — aT(bx)yz + yzT (bx)a.

Hence, ab = 0 in A implies ®(a,b) = 0. It follows from the hypothesis on A that
®(ab,c) = (ab,c)
for any a,b,c € A, that is,
abT (cxy)z + 2T (cxy)ab — abT (cx)yz — yzT (cx)ab

= aT(bcxy)z + 2T (bexy)a — aT (bex)yz — yzT'(bex)a,

for all z,y,z,a,b,c € A.
First let a = p;, we get

pibT (cxy)z + 2T (cxy)pib — pibT (cx)yz — yzT (cx)p;b

= p;T'(bexy)z + 2T (bexy)p; — piT'(bex)yz — y2T (bex) p;

which converges to

bT (cxy)z + 2T (cxy)b — bT (cx)yz — yzT (cx)b
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= T(bcxy)z + 2T (bcxy) — T (bex)yz — yzT (bex)

with respect to the norm topology. On the other hand, let x = p;, we get
bT (cpiy)z + 2T (cpiy)b — bT (cpy)yz — yzT (cp;)b

= T (bcp;y)z + 2T (bepiy) — T'(bep;)yz — yzT (bep;),
which converges to
bT'(cy)z + 2T (cy)b — bT(c)yz — yzT'(c)b
= T(bcy)z + 2T (bcy) — T (bc)yz — yzT(be)
with respect to the norm topology.
In the next steps, we consider z = p;,c = p;.
Since T is a bounded linear mapping, {p;}ics is bounded, {Tp;};c; is bounded too, and we

can assume that {Tp; };c; converges to an element & in M** with respect to the w*-topology,

then {y-T(p;) - b}icr converges to y - £ - b with respect to the w*-topology. Hence
2T (by) = T(b)y + bT'(y) + T(y)b + yT'(b) — y&b — b&y.

Since the right-hand-side of the above identity is symmetric on b and y, we deduce that
T(by) = T(yb).

T(by +yb) = T(b)y +yT(b) + T(y)b + bT'(y) — y&b — bey.

Hence T is a generalized Jordan derivation.

Corollary 2.2 Suppose that A is a commutative Banach algebra with the property
B and having a bounded approximate identity {p;};c;. Let M be an essential Banach A-
bimodule. Then the following conditions are equivalent:

(1) T: A— M is a generalized Jordan derivation;

(2) aT'(b)c+ cT'(b)a = 0 when ab = bc = 0,a,b,c € A.

Proof (2) = (1) is clear from Proposition 2.1.

(1) = (2) If T is a generalized Jordan derivation, then 7'(b) = d(b) + &b, for any b € A,
where d is a Jordan derivation from A to M**, £ € M**. Hence

aT(b)c+ cT'(b)a = a(d(b) + £b)c + c(d(b) + £b)a.
For the Jordan derivations d, we have
d(abc + cba) = d(a)bc + ad(b)c + abd(c) + d(c)ba + cd(b)a + cbd(a)
for every a, b, c in A. Hence, by the commutativity of A, we get

ad(b)c + cd(b)a =0
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for all a, b, ¢ with ab = bc = 0. By using the commutativity of A, and aébc+ c€ba = 0. Hence

aT'(b)e+ cI'(b)a =0

when ab = bc = 0,a,b,c € A. The proof is completed.
Suppose that A is a x-algebra, an A-bimodule M is called an A-x-bimodule if M is
equipped with a #-mapping from M into itself, such that

*

(am + pn)* =am* + Bn*, (am)* = m*a*, (ma)* = a*m* and (m*)* =m

whenever a in A, m,n in M and «, 3 in C.

Corollary 2.3 Suppose that A is a commutative Banach *-algebra with property B
and having a bounded approximate identity {p; }icr, M is an essential Banach A-*-bimodule.

Let T be a continuous linear mapping from A to M which satisfies

aT(b)*c+cT(b)*a=0
whenever a,b,c € A with a L. b 1 ¢. Then T is a generalized Jordan derivation.

Proof If A is commutative, a L b L ¢ is equivalent to ab* = b*c = 0. Let d = b*, then
the conditions in the corollary can be replaced by

ad =dc=0= aT(d*)"c+ cT'(d")"a=0.
By defining 7(d) = T'(d*)*, we get that
at(d)c+ cr(d)a =0,

when ad = dc = 0. So, we can apply Corollary 2.2 to deduce that 7 is a generalized Jordan

derivation. Hence, according to the definition of 7, T" is a generalized Jordan derivation.

Remark 1  We can not deduce that T is a symmetric mapping or a *-mapping. If
T is a inner derivation, it satisfies the above equation. However there are inner derivations
which are not x-derivations. In particular, 7' need not to be a local triple derivation, since

each local triple derivation preserves the adjoint ([14, Lemma 9]).

We give the following results which contain some new generalizations of [15, Proposition
3.4], [3, Theorem 2.11], [4, Lemma 2.8] with slightly weaker hypotheses.

Theorem 2.4 Suppose that A is a C*-algebra, and let T' : A — A be a bounded
linear mapping. Then the following statements are equivalent:
(1) {a,T(b),c} =0, whena L b Le¢, abce A,
(2) T is a generalized derivation.
Proof (1)= (2). If a,b,c € Ay, and ab = bc = 0. Hence ab* = b*a = 0,bc* = c*b = 0.
So we obtain
aT'(b)*c+ cT'(b)*a = 0.
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Then applying * to both sides. We get
aT(b)e+ cT'(b)a = 0.

By [4], so T is a generalized derivation.

(2) = (1). By the definition of generalized derivation, T'(b) = D(b) + &b for all b € A,
where D is a derivation from A to A**, & € A**. If ab* = b*a = 0,b"¢c = cb* = 0,
D(a*b) = D(a*)b+ a*D(b) = 0, then

b*D(a*)*+ D(b)*a =0, cb*D(a*)* + c¢D(b)*a = 0,
So)
eD(b)*a = 0.
By a similar calculation,
aD(b)*c = 0.
So
aT(b)*c+cT'(b)*a = a(D(Ob)" + "¢ )c+c(D(b)" +b"E")a =
aD(b)*c+ ab*¢*c+ cD(b)*a + cb*{*a = 0.
Hence T satisfies (1).

Before proving the next main result, we give the following lemma whose proof is con-
tained in the proof of [3, Theorem 2.1].

Lemma 2.5 Suppose that A is a C*-algebra, M is a Banach 4-bimodule, and let
T be a linear mapping from A to M. If there exists a £ € M™** such that T satisfies

T(a*) = T(a)a + aT(a) — aka,
for all @ € A,,, then T is a generalized Jordan derivation.

Proposition 2.2 Suppose that A is a C*-algebra, M is an essential Banach A-
x-bimodule, and let T : A — M be a bounded linear mapping satisfying the following
conditions:

al(b)c+cT(b)*'a=0,alblec ab,ce A (2.3)

Then T is a generalized Jordan derivation.

Proof Let B denote the abelian C*-subalgebra of A generated by a self-adjoint element
a of A. According to Corollary 2.3, we see that T|g : B — M is a generalized Jordan
derivation. Hence
T(a*) = T(a)a + aT(a) — ata

where £ € M**. For any a € A, a = a1 + iaq, where a1, as € A,,, according to Lemma 2.5,

we obtain that

T(ab+ ba) = T(a)b+ aT'(b) +T(b)a+ bT'(a) — alb — béa
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for any a,b € A. So T is a generalized Jordan derivation.

We conclude this section with some results about homomorphisms.

Definition 2.4 Let A and B be Banach algebras. A Jordan homomorphism from .4
into B is a linear mapping T : A — B such that
T(aob) = T(a) o T(b) (a,b € A),

where the symbol o denotes the Jordan product on A, i.e.

aob:%(ab—l—ba) (a,be A).

We make full use of the powerful property B to characterize homomorphisms on unital

Banach algebras satisfying this property.

Proposition 2.3  Suppose that A is a unital Banach algebra satisfying the property
B, let T: A — A be a continuous linear mapping satisfying

ab=bc=0=T(a)T(b)T(c)+T(c)T(b)T(a)=0.

If T(1) =1, then T is a Jordan homomorphism.

Proof Fix a,b € A with ab = 0. Define a continuous bilinear mapping
p:AxA— A,
such that
o(x,y) = T(a)T (bx)T(y) + T (y)T (bx)T (a).
When zy = 0, we have abr = 0 = bxy. Hence ¢(z,y) = 0, when zy = 0,a,b € A. By
property B,
90(557 1) = @(1,%),
for any = € A, that is, T(a)T(bx) + T(bx)T(a) = T(a)T (b)T(x) + T'(z)T(b)T (a).
Define a continuous bilinear mapping given by
®(a,b) = aT(bx) + T(bx)a — aT(b)x — xT(b)a.
By the previous paragraph, ab =0 = ®(a,b) = 0. So, by property B, we get

®(a,1) =®(1,a),

for any a € A.
So
T(a)T(x)+T(x)T(a) = T(a)T(1)T(z) — T(x)T(1)T(a)

=T(ax) + T(ax) — T(a)T(x) — T(x)T(a),
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2T (azx) =T (a)T(x) + T'(a)T(x) + T(x)T(a) + T(x)T(a)—

T(a)T(1)T(z) — T(2)T(1)T(a).
Since T'(ax) = T(za) and T(1) =1,
T(ax + xza) = T(a)T(x) + T (a)T(z).
Hence T is a Jordan homomorphism.
3 Spectrum-preserving mappings

Let M be a semifinite von Neumann algebra with a faithful semifinite normal trace 7
acting on a Hilbert space H. We denote by P (M) the collection of all projections in M, by
S(M, 1) the collection of all T-measurable operators with respect to M. More details about
T-measurable operators can be found in [16].

We recall the definition of the measure topology ¢, on the algebra S(M, 7). For every
€,6 > 0, we define the set

U(e,0) ={X € S(M, 1) : there exists P € P(M) such that || X(I — P)|| <e¢,7(P) < d}.

The topology generated by the sets U(e,0),€,0 > 0, is called the measure topology t, on
S(M, 7). Tt is well known that the algebra S(M, ) equipped with the measure topology is
a complete metrizable topological algebra.

Definition 3.5 Suppose that T is a closed densely defined linear operator on a
Hilbert space H with domain D(T"). The spectrum o(T") of T is the set of those complex
numbers A such that 7" — A\ is not a one-to-one mapping of D(T") onto H.

Definition 3.6  Suppose that A, B are algebras over the complex filed C, and ¢ is a
linear mapping from A to B. If ¢ satisfies o(¢(a)) = o(a), for every a € A, we shall say ¢ is

a spectrum-preserving linear mapping.

Proposition 3.4 If h = h* € S(M,7), then h is the limit of a sequence of linear
combinations of mutually orthogonal projections in measure topology (S(M, 1) = P(M)tT).

Proof By [17, Theorem 5.6.18], h is affiliated with an abelian von Neumann subalgebra
R of M. Hence h belongs to the S(R, 7|z). For an abelian von Neumann algebra, it is well
known that R can be uniformly approximated by finite linear combinations of mutually
orthogonal projections ([2, Propositionl.3.1 and Lemma 1.7.5]) i.e. R = P(R)H.”. With the

_ —TTLEA TS -
consideration that S(R,7|r) = R'7'® it follows that S(R,7|r) = P(R)H H = P(R)tﬂn.
Hence for any h = h* € S(M, 1), there exists a von Neumann subalgebra R of M such that

hePR) ™.
Proposition 3.5 Let M; and Mj be finite von Neumann algebras, and ® : M; —

M be a unital x-anti-homomorphism. If ® is normal, then ® is Cauchy-continuous for the

measure topologies on M; and M.
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Proof Let 75 be a normal tracial state on M. Since ® is normal, we note that
71 := T3 0 ® is a normal tracial state on M;. For €, > 0, A € U(ry,¢,9), there is a
projection F in M; such that ||AE| < e and 7y(I — E) < 4. First we note that if ® is a
s-anti-homomorphism, then ®(F)®(A)P(FE) = ®(EFAF) for any A, E, F € My, and ®(F) is
a projection if F is a projection.

Let E € P(M;), A € My,

[@(A)P(E)| = [[(1 - 2(E))D(A)2(E) + (E)P(A)2(E)
< [[(1—@(E))2(A)2(E)|| + [|[2(E)2(A)2(E)|
= [|[2(EA(1l - E))| + | 2(EAE)]
<[[AE(1 - E)|| + [|[EAE]
< 2||AE]|
< 2e,

and 75(1 — ®(E)) = 11 (I — E) < 4. Consequently,
O(U(11,€,9)) C U(T,2€,9).

Thus if a net {A;} in M, is Cauchy in measure topology, then the net {®(A;)} in M is
also Cauchy in measure topology. We conclude that ® is Cauchy-continuous for the measure

topologies on M; and M.
Theorem 3.6 Suppose that M is a factor of type II;, and let ¢ be a spectrum-

preserving linear mapping from S(M, 7) onto itself. Then ¢ is a #-isomorphism or a x-anti-

isomorphism.

Proof It can be easily seen that if ¢ satisfies o(¢(a)) = o(a), then ¢ is a positive
mapping from S(M,7) onto itself. Hence ¢ is self-adjoint, i.e. ¢(a*) = ¢(a)*, for every
a € S(M,7), and if a € M, we can deduce that ¢(a) € M. It follows that the restriction
of ¢ on M, denoted by ¢| 1, is a spectrum-preserving mapping. According to [10, Theorem
1.3], ¢|m is a Jordan isomorphism. By [18, Corollary 11], ¢|r is a x-isomorphism or a *-
anti-isomorphism. Hence ¢| is normal. By [19, Theorem 4.9] and Proposition 3.5, ¢|r¢ is
continuous in measure topology. Let h = h* € S(M, 1), by Proposition 3.4, h is the limit of
a sequence of linear combinations of orthogonal idempotents Consequently, by [10, Theorem
1.2], ¢(h) is the limit of a sequence of linear combinations of orthogonal idempotents. By
continuity of ¢, taking the limits of these sequences we conclude that ¢(h?) = ¢(h)?. Taking
h, k self-adjoint in S(M, ) we get

(@(h) + o(k))* = ¢(h)* + ¢(k)* + d(h)p(k) + ¢(k)b(h)
S((h+k)?) = ¢(h*) + ¢(k*) + ¢(hk + kh).

(6(h +k))*

Thus ¢(kh+kh) = ¢(h)p(k)+o(k)p(h), for every h, k self-adjoint elements. Let 2z € S(M, 7),
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then © = h + ik where h = (z + 2*)/2 and k = (z — x*)/2i are self-adjoint elements. Hence

¢(a?) = ¢(h* — k* +i(hk + kh)) = ¢(h*) — ¢(k)* + i(¢(R)$(k) + p(k)d(h))
= (¢(h) +ig(k))* = ¢(x)".

Hence, ¢ is a Jordan x-isomorphism. It follows that ¢ is a *-isomorphism or a *-anti-

isomorphism.

Theorem 3.7 Suppose that M is a finite von Neumann algebra, and let ¢ be
a spectrum-preserving linear mapping from S(M,7) onto itself. Then ¢ is a Jordan *-

isomorphism.

Proof In the proof, we need the [18, Theorem 10| instead of [18, Corollary 11]. The

remainder of the proof is similar to that of Theorem 3.6.
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