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1 Introduction

Fractional differential equations arise in many engineering and scientific disciplines.
Recently, more and more scholars are interested in fractional differential equations, see [1-
7]. For example, Arafa, Rida and Khalil [6] used the following fractional order model to
describe the efficacy of anti-viral drugs in the treatment of human immunodeficiency virus
type 1 (HIV-1): 




Dα1(x) = s− µx− βxz,

Dα2(y) = βxz − εy,

Dα3(z) = cy − γz,

where Dα1 , Dα2 , Dα3 are Caputo fractional derivatives with 0 < α1, α2, α3 ≤ 1, all param-
eters and variables are non-negative, x, y is the number of uninfected and infected CD4+
T-cells, respectively, z is the number of virions in plasma, s is the assumed constant rate
of production of CD4+ T-cells, l is their per capita death rate, b is the rate of infection
of CD4+ T-cells by virus, e is the per capita rate of disappearance of infected cells, and c
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is the death rate of virus particles. Ates and Zegeling [7] investigated the fractional-order
advection-diffusion reaction boundary value problems:

{
εCDαu + γu′ + f (u) = S (x) , x ∈ [0, 1] ,

u (0) = uL, u (1) = uR,

where 1 < α ≤ 2, 0 < ε ≤ 1, γ ∈ R, CDα is the Caputo fractional derivative.
In recent years, more and more attention are being paid to the existence of solutions

for fractional p-Laplacian problems. And many important results have been achieved in
this regard, see [8-14]. The p-Laplacian equation was derived from the following nonlinear
diffusion equation proposed by Leibenson [15] in 1983, when studying the one-dimensional
variable turbulent flow of gases through porous media

ut =
∂

∂x

(
∂um

∂x

∣∣∣∣
∂um

∂x

∣∣∣∣
µ−1

)
, m = n + 1.

When m > 1, the above equation is the porous media equation, when 0 < m < 1, the above
equation is the fast diffusion equation, and when m = 1, the above equation is the heat
equation, while when m = 1, µ 6= 1, such equation often appears in the study of non-Newton
fluids. Given the importance of such equations, the above equation is abstracted into the
following p-Laplacian equation

(φp(u′))′ = f(t, u),

where φp(s) = |s|p−2s (s 6= 0), φp(0) = 0, p > 1. Note that when p = 2, p-Laplacian
equation degenerates into a classical second-order differential equation. Naturally, in view
of its significance in theory and practice, more and more people are concerned about the
existence of solutions for fractional p-Laplacian problems. For example, Wang [16] studied
p-Laplacian problems:

{
Dγ

0+ϕp

(
Dα

0+x (t)
)

= f (t, x (t)) , 0 < t < 1,

x (0) = 0, x (1) = ax (ξ) , Dα
0+x (0) = 0, Dα

0+x (1) = bDα
0+x (η) ,

where 1 < α, γ ≤ 2, 0 ≤ a, b ≤ 1, 0 < ξ, η < 1, Dα
0+ is Riemann-Liouville fractional

derivative. The existence results of positive solution for the problem were obtained by lower
and upper solutions method. Tian [17] considered the following p-Laplacian problems:

{
Dα

0+ϕp

(
Dβ

0+x (t)
)

+ f (t, x (t)) = 0, 0 < t < 1,

x (0) = 0, Dγ
0+x (1) = λDγ

0+x (ξ) , Dβ
0+x (0) = 0,

where 0 < α < 1, 1 < β ≤ 2, 0 < γ ≤ 1, 0 < ξ < 1, 1 + γ ≤ β, λ ∈ [0,∞), Dα
0+ is Riemann-

Liouville fractional derivative. By using the fixed point theorem on the cone, the existence
results of positive solution for this problem were obtained. Chen and Liu [18] discussed the
following problems:

{
CDβ

0+φp

(
CDα

0+x
)

= f (t, x) , t ∈ [0, 1],

x (0) = −x (1) , CDα
0+x (0) = −CDα

0+x (1) ,



No. 1 Existence of positive solutions for fractional problems with p-Laplacian operator at resonance 3

where 0 < α, β ≤ 1 , 1 < α, β ≤ 2, CDα
0+ is Caputo fractional derivative, f : [0, 1]×R→ R is

continuous, φp (·) is p-Laplacian operator defined by φp (s) = |s|p−2
s(s 6= 0, p > 1), φp (0) =

0. Note that, when p = 2, the nonlinear operator CDβ
0+φp

(
CDα

0+

)
reduces to the linear

operator. By Schaefer’s fixed point theorem, the existence results of solutions for the problem
were obtained.

An interesting and effective method used to prove the existence of positive solutions for
fractional differential problems at resonance is Leggett-Williams norm-type theorem. Many
existence results of positive solution for fractional boundary value problems at resonance
with the linear derivative operator have been obtained, see literature [19-28]. However, as
far as we know, only Jiang [29] studied the existence of positive solutions for the following
fractional problems with p-Laplacian operator at resonance:

{
CDβ

0+ϕp

(
CDα

0+x (t)
)

= f
(
t, CDα

0+x (t)
)
, t ∈ (0, 1) ,

CDα
0+x (0) = CDα

0+x (1) , x(i)(0) = 0, i = 0, 1, 2, · · · , n− 1,

where 0 < β < 1, n − 1 < α ≤ n, CDα
0+ is Caputo fractional derivative, ϕp(s) = |s|p−2s,

p > 1. By using Leggett-Williams norm-type theorem, the existence results of positive
solutions for the problem with a nonlinear derivative operator at resonance were obtained.

Inspired by the above excellent results, first, this paper will study the existence of
positive solutions for the following p-Laplacian boundary value problem

CDβ
0+ϕp(CDα

0+x(t)) = f(t, CDα
0+x(t)), t ∈ (0, 1), (1.1)

CDα
0+x(1) = CDα

0+x(δ), x(i)(0) = 0, i = 0, 1, 2, · · · , n− 1, (1.2)

where n− 1 < α ≤ n, 0 < β < 1, CDα
0+, CDβ

0+ are Caputo fractional derivatives, 0 < δ < 1,

ϕp(s) = |s|p−2s, p > 1, f : [0, 1]× R→ R is continuous.
On the other hand, we discuss problem (1.1) with the following integral boundary

conditions:

x(0) = 0, ϕp(CDα
0+x(1)) =

∫ 1

0

h(t)ϕp(CDα
0+x(t))dt, (1.3)

where CDα
0+, CDβ

0+ are Caputo fractional derivatives, 0 < α, β < 1, h(t) ≥ 0,
∫ 1

0
h(t)dt = 1,

ϕp(s) = s|s|p−2, p > 1, f : [0, 1]× R→ R is continuous.
Let us emphasize the contribution of our article: firstly, as far as we know, there is

no paper on the existence of positive solutions for fractional p-Laplacian boundary value
problems (1.1)(1.2) and (1.1)(1.3) at resonance, so our article enriches some existing articles.
Secondly, our article serves as a further development for the result of [29]. When δ = 0, the
results of [29] will be a special case of our result.

2 Preliminaries

To facilitate understanding, this section introduces some concepts and lemmas related
to this article. For more details, please refer to the references hereunder (see [20,30,31]).
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Definition 2.1 ([30]) Let X, Y be real Banach spaces, and L : domL ⊂ X →
Y be a linear map. If dim KerL = codimImL < +∞ and ImL is a closed subset in Y ,
then the map L is a Fredholm operator with index zero. If there exists the continuous
projections P : X → X and Q : Y → Y satisfying ImP = KerL and KerQ = ImL, then
L |domL∩KerP

: domL ∩ KerP → ImL is reversible. We denote the inverse of this map by
KP , i.e. KP = L−1

P and KP,Q = KP (I −Q). Moreover, since dim ImQ = codimImL, there
exists an isomorphism J : ImQ → KerL. It is known that the operator equation Lx = Nx

is equivalent to
x = (P + JQN)x + KP (I −Q)Nx,

where N : X → Y be a nonlinear operator. If Ω is an open bounded subset of X and
domL ∩ Ω 6= ∅, then the map N is L-compact on Ω when QN : Ω → Y is bounded and
KP (I −Q) N : Ω → X is compact.

Let C be a cone in X. Then C induces a partial order in X by x ≤ y iff y − x ∈ C.

Lemma 2.1 ([20]) Let C be a cone in X. Then for every u ∈ C\{0} there exists
a positive number σ(u) such that ‖x + u‖ ≥ σ(u) ‖x‖ for all x ∈ C. Let γ : X → C be a
retraction, that is, a continuous mapping such that γ(x) = x for all x ∈ C. Set

Ψ := P + JQN + KP (I −Q)N and Ψγ := Ψ ◦ γ.

Lemma 2.2 ([20]) Let C be a cone in X and Ω1,Ω2 be open bounded subsets of X

with Ω1 ⊂ Ω2 and C ∩ (Ω2\Ω1) 6= ∅. Assume that the following conditions are satisfied:
(1) L : domL ⊂ X → Y be a Fredholm operator of index zero and N : X → Y be

L-compact on every bounded subset of X.
(2) Lx 6= λNx for every (x, λ) ∈ [C ∩ ∂Ω2 ∩ domL]× (0, 1).
(3) γ maps subsets of Ω2 into bounded subsets of C.
(4) deg([I − (P + JQN)γ]|KerL,KerL ∩ Ω2, 0) 6= 0.

(5) there exists u0 ∈ C\{0} such that ‖x‖ ≤ σ(u0) ‖Ψx‖ for x ∈ C(u0) ∩ ∂Ω1, where
C(u0) = {x ∈ C : µu0 ≤ x} for some µ > 0 and σ(u0) are such that ‖x + u0‖ ≥ σ(u0) ‖x‖
for every x ∈ C.

(6) (P + JQN)γ(∂Ω2) ⊂ C.

(7) Ψγ(Ω2\Ω1) ⊂ C.

Then the equation Lx = Nx has at least one solution in C ∩ (Ω2\Ω1).
Definition 2.2 ([31]) The Riemann-Liouville fractional integral of order α(α > 0) for

the function x : (0,+∞) → R is defined as

Iα
0+x(t) =

1
Γ(α)

∫ t

0

(t− s)α−1
x(s)ds,

provided that the right-hand side integral is defined on (0,+∞).
Definition 2.3 ([31]) The Captuo fractional derivative of order α(α > 0) for the

function x : (0,+∞) → R : is defined as

CDα
0+x(t) = In−α

0+

dnx(t)
dtn

=
1

Γ(n− α)

∫ t

0

(t− s)n−α−1
x(n)(s)ds,
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where n = [α] + 1, provided that the right-hand side integral is defined on (0,+∞).
Lemma 2.3 ([31]) Assume x ∈ L[0, 1], α > β ≥ 0, α > 1, then CDβ

0+Iα
0+x(t) =

Iα−β
0+ x(t), CDβ

0+Iβ
0+x(t) = x(t).

Lemma 2.4 ([31]) Let n − 1 < α ≤ n, if CDα
0+x(t) ∈ C[0, 1], then Iα

0+
CDα

0+x(t) =
x(t) + c0 + c1t + c2t

2 + · · ·+ cn−1t
n−1, where ci ∈ R, i = 0, 1, · · · , n− 1, n = [α] + 1.

3 The existence of positive solution for problem (1.1)(1.2)

Since CDβ
0+[ϕp(CDα

0+(·))] is a nonlinear operator, so we can’t solve problem (1.1)(1.2)
by Lemma 2.2. Hence, we provide the following lemma.

Lemma 3.1 u(t) is a solution of the following problem:
{

CDβ
0+u(t) = f(t, ϕq(u(t))), t ∈ (0, 1),

u(1) = u(δ),
(3.1)

if and only if x(t) is a solution of problem (1.1)(1.2), where x(t) = Iα
0+ϕq(u(t)), 1

p
+ 1

q
= 1.

Proof If u(t) is a solution of problem (3.1) and x(t) = Iα
0+ϕq(u(t)), then u(t) =

ϕp(CDα
0+x(t)) and x(i)(0) = 0, i = 0, n− 1. Replacing u(t) with ϕp(CDα

0+x(t)) in problem
(3.1), we can find that x(t) is a solution of problem (1.1)(1.2).

On the other hand, if x(t) is a solution of problem (1.1)(1.2) and u(t) = ϕp(CDα
0+x(t)),

substituting u(t) for ϕp(CDα
0+x(t)) in problem (1.1)(1.2), we can find that u(t) satisfies

problem (3.1).
Let X = Y = C [0, 1] with the norm ‖u‖ = max

t∈[0,1]
|u (t)|. Set a cone C = {u(t) ∈

X|u(t) ≥ 0, t ∈ [0, 1]}. Define operators L : domL ⊂ X → Y and N : X → Y as follows:

Lu(t) = CDβ
0+u(t), Nu(t) = f(t, ϕq(u(t))), (3.2)

where domL = {u(t)|u(t), CDβ
0+u(t) ∈ X, u(1) = u(δ)}. So problem (3.1) can be written

by Lu = Nu, u ∈ domL.

For simplicity of notation, we set

l(s) =

{
(1− s)β−1 − (δ − s)β−1

, 0 ≤ s ≤ δ < 1,

(1− s)β−1
, 0 ≤ δ ≤ s < 1,

and

G1(t, s) =

{
(t−s)β−1

Γ(β)
− (1−s)β

Γ(β+1)
+ β(Γ(β+2)+1−(β+1)tβ)

(1−δβ)Γ(β+2)
l(s), 0 ≤ s < t ≤ 1

− (1−s)β

Γ(β+1)
+ β(Γ(β+2)+1−(β+1)tβ)

(1−δβ)Γ(β+2)
l(s), 0 ≤ t ≤ s ≤ 1.

We denote

K1 = min{1,
1− δβ

β max
s∈[0,1]

l(s)
,

1
max

t,s∈[0,1]
G1(t, s)

}.

Thus, one has

1− K1βl(s)
1− δβ

≥ 0, 1−K1G1(t, s) ≥ 0. (3.3)
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First, we give the main results of existence of positive solution for problem (1.1)(1.2).
Theorem 3.1 Suppose the following conditions hold.
(H1) There exists a constant R0 > 0 such that f(t, u) < 0, t ∈ [0, 1], u > R0.
(H2) There exist nonnegative functions a(t), b(t) ∈ C[0, 1] with

max
t∈[0,1]

∫ t

0

(t− s)β−1
a(s)ds := A < +∞, max

t∈[0,1]

∫ t

0

(t− s)β−1
b(s)ds := B <

Γ(β)
2

,

such that
|f(t, u)| ≤ a(t) + b(t)ϕp(|u|), ∀t ∈ [0, 1].

(H3) f(t, u) ≥ −K1ϕp(u), t ∈ [0, 1], u > 0.

(H4) There exist r > 0, t0 ∈ [0, 1] and M0 ∈ (0, 1) such that

G1(t0, s)f(s, u) ≥ 1−M0

M0

ϕp(u), s ∈ [0, 1), M0r ≤ u ≤ r.

Then problem (1.1)(1.2) has at least one positive solution.
Next, we give some important lemmas related to Theorem 3.1.

Lemma 3.2 Let L be defined by (3.2), then

KerL = {u ∈ X|u(t) = c, c ∈ R, ∀t ∈ [0, 1]}, (3.4)

ImL = {y ∈ Y |
∫ 1

0

l(s)y(s)ds = 0}. (3.5)

Proof By Lemma 2.4, we can obtain (3.4). If y ∈ ImL, there exists u ∈ domL such
that y = Lu ∈ Y . From Lemma 2.4, we have

u(t) =
1

Γ(β)

∫ t

0

(t− s)β−1
y(s)ds + c, c ∈ R.

Combined with boundary conditions of problem (3.1), we get
∫ 1

0

(1− s)β−1
y(s)ds =

∫ δ

0

(δ − s)β−1
y(s)ds,

that is,
∫ 1

0
l(s)y(s)ds = 0.

On the other hand, if
∫ 1

0
l(s)y(s)ds = 0 for y ∈ Y , let u(t) = Iβ

0+y(t), then u ∈ domL

and CDβ
0+u(t) = y(t). Hence, y ∈ ImL.

Lemma 3.3 Let L be defined by (3.2), then L is a Fredholm operator of index zero.
The linear projection operators P : X → Y and Q : Y → Y can be defined as follows:

Pu(t) =
∫ 1

0

u(t)dt, Qy(t) =
β

1− δβ

∫ 1

0

l(s)y(s)ds, ∀t ∈ [0, 1],

and KP : ImL → domL ∩KerP is defined as

KP y(t) =
∫ 1

0

k(t, s)y(s)ds, ∀t ∈ [0, 1],
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where

k(t, s) =





1
Γ(β)

(t− s)β−1 − 1
Γ(β + 1)

(1− s)β
, 0 ≤ s ≤ t ≤ 1,

− 1
Γ(β + 1)

(1− s)β
, 0 ≤ t ≤ s ≤ 1.

Proof Clearly, ImP = KerL and Pu2 = Pu. By u = (u − Pu) + Pu, we have
X = KerP + KerL. By a simple calculation, we obtain KerL ∩ KerP = {0}. Hence,
X = KerL ⊕ KerP. It is clear that ImL ⊂ KerQ. On the other hand, if y(t) ∈ KerQ ⊂ Y ,
then

Q2y = Q(Qy) = Qy · β

1− δβ

∫ 1

0

l(s)ds = Qy.

If y ∈ Y , let y = (y − Qy) + Qy, where y − Qy ∈ KerQ, Qy ∈ ImQ. It follows from
KerQ = ImL and Q2y = Qy that ImQ ∩ ImL = {0}. Then, we obtain Y = ImL ⊕ ImQ.
Thus, dimKerL = dim ImQ = codimImL = 1 < ∞. It implies that L is a Fredholm operator
of index zero.

For y ∈ ImL, we have KP y ∈ domL ∩ KerP and LKP y = y. On the other hand, if
u ∈ domL ∩KerP , by Lemma 2.4, one has

KP Lu(t) =
1

Γ(β)
[
∫ t

0

(t− s)β−1
Lu(s)ds− 1

β

∫ 1

0

(1− s)β
Lu(s)ds]

= Iβ
0+

CDβ
0+u(t)− Iβ+1

0+
CDβ

0+u(t)|t=1 = u(t) + c− Iβ+1
0+

CDβ
0+u(1).

So,
∫ 1

0
KP Lu(t)dt =

∫ 1

0
u(t)dt + c−Iβ+1

0+
CDβ

0+u(1). It follows from u ∈ KerP and KP Lu ∈
KerP that c = Iβ+1

0+
CDβ

0+u(1). Hence, we have KP Lu = u, u ∈ domL ∩KerP .
Lemma 3.4 QN : X → Y is continuous and bounded and KP (I −Q)N : Ω → X is

compact, where Ω ⊂ X is bounded.
Proof By the continuity of f , we see that QN(Ω) and KP (I −Q)N(Ω) are bounded.

That is, there exist constants M1,M2 > 0 such that |(I − Q)Nu)| ≤ M1 and |KP (I −
Q)Nu)| ≤ M2, ∀u ∈ Ω, t ∈ [0, 1]. Thus, one need only prove that KP (I −Q)N(Ω) ⊂ X is
equicontinuous. Let KP,Q = KP (I −Q)N , for 0 ≤ t1 < t2 ≤ 1, u ∈ Ω, we get

|KP,Qu(t2)−KP,Qu(t1)|

=
1

Γ(β)
|
∫ t2

0

(t2 − s)β−1(I −Q)Nu(s)ds−
∫ t1

0

(t1 − s)β−1(I −Q)Nu(s)ds|

=
1

Γ(β)
|
∫ t1

0

[(t2 − s)β−1 − (t1 − s)β−1](I −Q)Nu(s)ds +
∫ t2

t1

(t2 − s)β−1(I −Q)Nu(s)ds|

≤ M1

Γ(β)
[
∫ t1

0

[(t1 − s)β−1 − (t2 − s)β−1]ds +
∫ t2

t1

(t2 − s)β−1
ds

=
M1

Γ(β + 1)
[tβ

1 − tβ
2 + 2(t2 − t1)β].

It follows from the uniform continuity of tβ and t on [0, 1] that KP (I−Q)N(Ω) are equicon-
tinuous on [0, 1]. By Arzela-Ascoli theorem, we show that KP (I −Q)N(Ω) is compact.
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Lemma 3.5 If the condition (H1) and (H2) hold, the set

Ω0 = {u(t)|Lu(t) = λNu(t), u(t) ∈ C ∩ domL, λ ∈ (0, 1)}

is bounded.
Proof For u(t) ∈ Ω0, we have QNu(t) = 0. By (H1) and QNu(t) = 0, there exists

t0 ∈ [0, 1] such that ϕq(u(t0)) ≤ R0, i.e. u(t0) ≤ ϕp(R0). By u(t) = Iβ
0+

CDβ
0+u(t) + c, one

has

|c| ≤ |u(t)|+ |Iβ
0+

CDβ
0+u(t)| ≤ |u(t0)|+ |Iβ

0+
CDβ

0+u(t0)| ≤ ϕp(R0) + |Iβ
0+

CDβ
0+u(t0)|,

and
‖u‖ ≤ ϕp(R0) + |Iβ

0+
CDβ

0+u(t0)|+ |Iβ
0+

CDβ
0+u(t)|. (3.6)

From Lu = λNu, we get CDβ
0+u(t) = λf(t, ϕq(u(t))). By (H2) and λ ∈ (0, 1), one has

‖u‖ ≤ ϕp(R0) + |Iβ
0+f(t, ϕq(u(t)))|t0 |+ |Iβ

0+f(t, ϕq(u(t)))|

≤ ϕp(R0)+
1

Γ(β)

∫ t0

0

(t0−s)β−1|f(s, ϕq(u(t)))|ds+
1

Γ(β)

∫ t

0

(t−s)β−1|f(s, ϕq(u(s)))|ds

≤ ϕp(R0)+
1

Γ(β)

∫ t0

0

(t0 − s)β−1[a(s)+b(s)u(s)]ds+
1

Γ(β)

∫ t

0

(t−s)β−1[a(s)+b(s)u(s)]ds

≤ ϕp(R0) +
2

Γ(β)
(A + B ‖u‖).

Thus,

‖u‖ ≤
ϕp(R0) + 2A

Γ(β)

1− 2B
Γ(β)

:= N < +∞.

Hence, Ω0 is bounded.
Proof of Theorem 3.1 Set

Ω1 = {u ∈ X|M0 ‖u‖ < |u(t)| < r < R, t ∈ [0, 1]}, Ω2 = {u ∈ X| ‖u‖ < R},

where R = max{ϕp(R0), N} + 1. It is clear that Ω1 and Ω2 are open bounded sets of
X, Ω1 ⊂ Ω2 and C ∩ (Ω2\Ω1) 6= φ. By Lemma 3.2, 3.3, 3.4 and 3.5, we know that L is a
Fredholm operator of index zero and the conditions (1), (2) of Lemma 2.2 are fulfilled.

Define γ : X → C as γu(t) = |u(t)|, u(t) ∈ X and J : ImQ → KerL as J(c) = c, c ∈ R.
Then γ : X → C is a retraction and (3) of Lemma 2.2 holds. For u(t) ∈ KerL ∩ ∂Ω2, then
u(t) ≡ c. Let

H(c, λ) = c− λ|c| − λβ

1− δβ

∫ 1

0

l(s)f(s, ϕq(|c|))ds,

where λ ∈ [0, 1]. Suppose H(c, λ) = 0, by (H3), we have

c = λ|c|+ λβ

1− δβ

∫ 1

0

l(s)f(s, ϕq(|c|))ds ≥ λ|c| − λβ

1− δβ

∫ 1

0

l(s)K1|c|ds

= λ|c|(1−K1) ≥ 0.
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Thus H(c, λ) = 0 implies c ≥ 0. Clearly, H(R, 0) 6= 0. Moreover, if H(R, λ) = 0, λ ∈ (0, 1],we
get

0 ≤ R(1− λ) =
λβ

1− δβ

∫ 1

0

l(s)f(s, ϕq(R))ds,

which contradicts to condition (H1). Hence H(u, λ) 6= 0 for u ∈ KerL ∩ ∂Ω2, λ ∈ [0, 1].
Therefore,

deg([I − (P + JQN)γ]|KerL, KerL ∩ Ω2, 0)

= deg(H(x, 1), KerL ∩ Ω2, 0) = deg(H(x, 0), KerL ∩ Ω2, 0)

= deg(I, KerL ∩ Ω2, 0) = 1 6= 0.

Then, (4) of Lemma 2.2 holds.
Set u0(t) = 1, t ∈ [0, 1], then u0 ∈ C\{0}, C(u0) = {u ∈ C|u(t) > 0, t ∈ [0, 1]}. Take

σ(u0) = 1 and u ∈ C(u0) ∩ ∂Ω1, then M0r ≤ u(t) ≤ r, t ∈ [0, 1]. By (H4), we have

Ψu(t0) =
∫ 1

0

u(s)ds +
β

1− δβ

∫ 1

0

l(s)f(s, ϕq(u(s)))ds

+
∫ 1

0

k(t0, s)[f(s, ϕq(u(s)))− β

1− δβ

∫ 1

0

l(τ)f(τ, ϕq(u(τ)))dτ ]ds

=
∫ 1

0

u(s)ds +
∫ 1

0

G1(t0, s)f(s, ϕq(u(s)))ds

≥
∫ 1

0

u(s)ds +
∫ 1

0

1−M0

M0

u(s)ds

≥ M0r + (1−M0)r = r = ‖u‖ .

So, ‖u‖ ≤ σ(u0) ‖Ψu‖, for u ∈ C(u0) ∩ ∂Ω1. Hence, (5) of Lemma 2.2 holds.
For u(t) ∈ ∂Ω2, t ∈ [0, 1], by (H3) and (3.3), we get

(P + JQN)γ(u) =
∫ 1

0

|u(s)|ds +
β

1− δβ

∫ 1

0

l(s)f(s, ϕq(|u(s)|))ds

≥
∫ 1

0

(1− βK1

1− δβ
l(s))|u(s)|ds ≥ 0.

Thus, (P + JQN)γ(∂Ω2) ⊂ C. So (6) of Lemma 2.2 holds.
For u(t) ∈ Ω2\Ω1, t ∈ [0, 1], by (H3) and (3.3), we have

Ψγ(u(t)) =
∫ 1

0

|u(s)|ds +
∫ 1

0

G1(t, s)f(s, ϕq(|u(s)|))ds

≥
∫ 1

0

|u(s)|ds−K1

∫ 1

0

G1(t, s)|u(s)|ds

=
∫ 1

0

(1−K1G1(t, s))|u(s)|ds ≥ 0.

Hence, (7) of Lemma 2.2 holds.
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By Lemma 2.2, we see that the equation Lu = Nu has a positive solution u. By Lemma
3.1, problem (1.1)(1.2) has at least one positive solution.

4 The existence of positive solution for problem (1.1)(1.3)

Since CDβ
0+[ϕp(CDα

0+(·))] is a nonlinear operator, so we can’t solve problem (1.1)(1.3)
by Lemma 2.2. Hence, we provide the following lemma.

Lemma 4.1 u(t) is a solution of the following problem:




CDβ
0+u(t) = f(t, ϕq(u(t))), t ∈ (0, 1),

u(1) =
∫ 1

0

h(t)u(t)dt,
(4.1)

if and only if x(t) is a solution of problem (1.1)(1.3), where x(t) = Iα
0+ϕq(u(t)), 1

p
+ 1

q
= 1.

Proof The proof process is similar to Lemma 3.1, which is omitted here.

Let X = Y = C [0, 1] with the norm ‖u‖ = max
t∈[0,1]

|u (t)|. Take a cone C = {u(t) ∈
X|u(t) ≥ 0, t ∈ [0, 1]}. Define operators L : domL ⊂ X → Y and N : X → Y as follows:

Lu(t) = CDβ
0+u(t), Nu(t) = f(t, ϕq(u(t))), (4.2)

where domL = {u(t)|u(t), CDβ
0+u(t) ∈ X, u(1) =

∫ 1

0
h(t)u(t)dt}. Then problem (4.1) can

be written by Lu = Nu, u ∈ domL. For the simplicity of notation, let

G2(t, s) =





(t− s)β−1

Γ(β)
− (1− s)β

Γ(β + 1)
+

β(1− tβ

Γ(β+1)
+ 1

Γ(β+2)
)

1− ∫ 1

0
h(t)tβdt

× [(1− s)β−1 −
∫ 1

s

h(t)(t− s)β−1dt], 0 ≤ s < t < 1,

− (1−s)β

Γ(β+1)
+

β(1− tβ

Γ(β+1)
+ 1

Γ(β+2)
)

1−∫ 1

0
h(t)tβdt

[(1−s)β−1−
∫ 1

s

h(t)(t−s)β−1
dt], 0 ≤ t ≤ s < 1,

K2 = min{1,
1− ∫ 1

0
h(t)tβdt

β max
t,s∈[0,1]

[(1− s)β−1 − ∫ 1

s
h(t)(t− s)β−1

dt]
,

1
max

t,s∈[0,1]
G2(t, s)

}.

Thus, one has

1− K2β

1− ∫ 1

0
h(t)tβdt

[(1− s)β−1 −
∫ 1

s

h(t)(t− s)β−1
dt] ≥ 0, 1−K2G2(t, s) ≥ 0. (4.3)

Below, we first give the main results of existence of positive solution for problem
(1.1)(1.3).

Theorem 4.1 Assume that the conditions (H1)-(H2) hold. And the following condi-
tions are satisfied.
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(H5) f(t, u) ≥ −K2ϕp(u), t ∈ [0, 1], u > 0.

(H6) There exist r > 0, t0 ∈ [0, 1] and M0 ∈ (0, 1) such that

G2(t0, s)f(s, u) ≥ 1−M0

M0

ϕp(u), s ∈ [0, 1), M0r ≤ u ≤ r.

Then problem (1.1)(1.3) has at least one positive solution.
Next, we give some important lemmas related to Theorem 4.1.
Lemma 4.2. Let L be defined by (4.2), then

KerL = {u ∈ X|u(t) = c, c ∈ R, ∀t ∈ [0, 1]},

ImL = {y ∈ Y |
∫ 1

0

[(1− s)β−1 −
∫ 1

s

h(t)(t− s)β−1
dt]y(s)ds = 0}.

The linear projection operators P : X → Y and Q : Y → Y can be defined as follows:

Pu(t) =
∫ 1

0

u(t)dt,

Qy(t) =
β

1− ∫ 1

0
h(t)tβdt

∫ 1

0

[(1− s)β−1 −
∫ 1

s

h(t)(t− s)β−1
dt]y(s)ds, ∀t ∈ [0, 1],

and KP : ImL → domL ∩KerP is defined as

KP y(t) =
∫ 1

0

k(t, s)y(s)ds, ∀t ∈ [0, 1],

where

k(t, s) =





1
Γ(β)

(t− s)β−1 − 1
Γ(β + 1)

(1− s)β
, 0 ≤ s ≤ t ≤ 1,

− 1
Γ(β + 1)

(1− s)β
, 0 ≤ t ≤ s ≤ 1.

Proof The proof is similar to that of Lemma 3.2, 3.3 and is omitted.
Lemma 4.3 QN : X → Y is continuous and bounded and KP (I − Q)N :Ω→X is

compact, where Ω ⊂ X is bounded.
Proof The proof is similar to that of Lemma 3.4 and is omitted.
Lemma 4.4 If the condition (H1) and (H2) hold, the set

Ω0 = {u(t)|Lu(t) = λNu(t), u(t) ∈ C ∩ domL, λ ∈ (0, 1)}

is bounded.
Proof The proof is similar to that of Lemma 3.5 and is omitted.
Proof of Theorem 4.1 Set

Ω1 = {u ∈ X|M0 ‖u‖ < |u(t)| < r < R, t ∈ [0, 1]}, Ω2 = {u ∈ X| ‖u‖ < R},
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where R = max{ϕp(R0), N} + 1. It is clear that Ω1 and Ω2 are open bounded sets of
X, Ω1 ⊂ Ω2 and C ∩ (Ω2\Ω1) 6= φ. By Lemma 4.2, 4.3 and 4.4, we know that L is a
Fredholm operator of index zero and the conditions (1), (2) of Lemma 2.2 are fulfilled.

Define γ : X → C as γu(t) = |u(t)|, u(t) ∈ X and J : ImQ → KerL as J(c) = c, c ∈ R.
Then γ : X → C is a retraction and (3) of Lemma 2.2 holds.

For u(t) ∈ KerL ∩ ∂Ω2, then u(t) ≡ c. Let

H(c, λ) = c− λ|c| − λβ

1− ∫ 1

0
h(t)tβdt

∫ 1

0

[(1− s)β−1 −
∫ 1

s

h(t)(t− s)β−1
dt]f(s, ϕq(|c|))ds,

where λ ∈ [0, 1]. Suppose H(c, λ) = 0, by (H5), we have

c = λ|c|+ λβ

1− ∫ 1

0
h(t)tβdt

∫ 1

0

[(1− s)β−1 −
∫ 1

s

h(t)(t− s)β−1
dt]f(s, ϕq(|c|))ds

≥ λ|c| − λβ

1− ∫ 1

0
h(t)tβdt

∫ 1

0

[(1− s)β−1 −
∫ 1

s

h(t)(t− s)β−1
dt]K2|c|ds

= λ|c|(1−K2) ≥ 0.

Thus H(c, λ) = 0 implies c ≥ 0. Clearly, H(R, 0) 6= 0. Moreover, if H(R, λ) = 0, λ ∈ (0, 1],we
get

0 ≤ R(1− λ) =
λβ

1− ∫ 1

0
h(t)tβdt

∫ 1

0

[(1− s)β−1 −
∫ 1

s

h(t)(t− s)β−1
dt]f(s, ϕq(R))ds,

which contradicts to condition (H1). Hence H(u, λ) 6= 0 for u ∈ KerL ∩ ∂Ω2, λ ∈ [0, 1].
Therefore,

deg([I − (P + JQN)γ]|KerL, KerL ∩ Ω2, 0)

= deg(H(x, 1), KerL ∩ Ω2, 0) = deg(H(x, 0), KerL ∩ Ω2, 0)

= deg(I, KerL ∩ Ω2, 0) = 1 6= 0.

Then, (4) of Lemma 2.2 holds.
Set u0(t) = 1, t ∈ [0, 1], then u0 ∈ C\{0}, C(u0) = {u ∈ C|u(t) > 0, t ∈ [0, 1]}. Take

σ(u0) = 1 and u ∈ C(u0) ∩ ∂Ω1, then M0r ≤ u(t) ≤ r, t ∈ [0, 1]. By (H6), we have

Ψu(t0) =
∫ 1

0

u(s)ds +
β

1− ∫ 1

0
h(t)tβdt

∫ 1

0

[(1− s)β−1 −
∫ 1

s

h(t)(t− s)β−1
dt]f(s, ϕq(u(s)))ds

+
∫ 1

0

k(t0, s){f(s, ϕq(u(s)))− β

1− ∫ 1

0
h(t)tβdt

×
∫ 1

0

[(1− τ)β−1 −
∫ 1

τ

h(t)(t− τ)β−1
dt]f(τ, ϕq(u(τ)))dτ}ds

=
∫ 1

0

u(s)ds +
∫ 1

0

G2(t0, s)f(s, ϕq(u(s)))ds ≥
∫ 1

0

u(s)ds +
∫ 1

0

1−M0

M0

u(s)ds

≥ M0r + (1−M0)r = r = ‖u‖ .
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So, ‖u‖ ≤ σ(u0) ‖Ψu‖, for u ∈ C(u0) ∩ ∂Ω1. Hence, (5) of Lemma 2.2 holds.
For u(t) ∈ ∂Ω2, t ∈ [0, 1], by (H5) and (4.3), we get

(P + JQN)γ(u)

=
∫ 1

0

|u(s)|ds+
β

1−∫ 1

0
h(t)tβdt

∫ 1

0

[(1−s)β−1−
∫ 1

s

h(t)(t−s)β−1
dt]f(s, ϕq(|u(s)|))ds

≥
∫ 1

0

{1− βK2

1− ∫ 1

0
h(t)tβdt

[(1− s)β−1 −
∫ 1

s

h(t)(t− s)β−1
dt]}|u(s)|ds ≥ 0.

Thus, (P + JQN)γ(∂Ω2) ⊂ C. So (6) of Lemma 2.2 holds.
For u(t) ∈ Ω2\Ω1, t ∈ [0, 1], by (H5) and (4.3), we have

Ψγ(u(t)) =
∫ 1

0

|u(s)|ds +
∫ 1

0

G2(t, s)f(s, ϕq(|u(s)|))ds

≥
∫ 1

0

|u(s)|ds−K2

∫ 1

0

G2(t, s)|u(s)|ds =
∫ 1

0

(1−K2G2(t, s))|u(s)|ds ≥ 0.

Hence, (7) of Lemma 2.2 holds. By Lemma 2.2, we see that the equation Lu = Nu has a
positive solution u. By Lemma 4.1, problem (1.1)(1.3) have at least one positive solution.

5 Example

Example 5.1 Consider the following problem




CD
1
2
0+ϕ2(CD

1
2
0+x(t)) =

1
4
− 1

20
|CD

1
2
0+x(t)| 12 , t ∈ (0, 1),

x(0) = 0, CD
1
2
0+x(1)=CD

1
2
0+x(

1
2
),

(5.1)

where α = β = δ = 1
2
, p = 2, q = 2, f(t, CD

1
2
0+x(t)) = 1

4
− 1

20
|CD

1
2
0+x(t)| 12 .

By Lemma 3.1, we have




CD
1
2
0+u(t) =

1
4
− 1

20
|u(t)| 12 ,

u(1) = u(
1
2
).

(5.2)

So, we get

l(s) =





1√
1− s

− 1√
1
2
− s

, 0 ≤ s ≤ 1
2
,

1√
1− s

,
1
2
≤ s < 1.

G1(t, s) =





1
Γ( 1

2
)
(t− s)−

1
2 − 1

Γ( 3
2
)
(1− s)

1
2 +

1
2
(Γ( 5

2
) + 1− 3

2
t

1
2 )

(1− 1
2

1
2 )Γ( 5

2
)

l(s), 0 ≤ s < t ≤ 1,

− 1
Γ( 3

2
)
(1− s)

1
2 +

1
2
(Γ( 5

2
) + 1− 3

2
t

1
2 )

(1− 1
2

1
2 )Γ( 5

2
)

l(s), 0 ≤ t ≤ s ≤ 1.
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Take R0 = 25, a(t) = 1
4
, b(t) = 1

20
, K1 ≈ 0.23641, M0 = 0.7, r = 0.04, t0 = 0. By simple

calculations, we can see that

f(t, u) =
1
4
− 1

20
|u| 12 < 0, u > 25,

|f(t, u)| ≤ a(t) + b(t)ϕp(|u|),

A = max
t∈[0,1]

∫ t

0

(t− s)−
1
2 · 1

4
ds =

1
2

< +∞,

B = max
t∈[0,1]

∫ t

0

(t− s)−
1
2 · 1

20
ds =

1
10

<
Γ( 1

2
)

2
,

f(t, u) ≥ −0.23641u, u > 0,

G1(t0, s)f(s, u) ≥ 0.375− 0.4583u >
0.3
0.7

u, 0.028 ≤ u ≤ 0.04, s ∈ [0, 1).

So the conditions (H1)-(H4) of Theorem 3.1 hold. By Theorem 3.1, we can conclude that
problem (5.1) has at least one positive solution.

Example 5.2 Consider the following problem





CD
1
2
0+ϕ2(CD

1
2
0+x(t)) =

1
4
− 1

20
|CD

1
2
0+x(t)| 12 , t ∈ (0, 1),

x(0) = 0, ϕ2(CD
1
2
0+x(1)) =

∫ 1

0

ϕ2(CD
1
2
0+x(t))dt,

(5.3)

where α = β = 1
2
, p = 2, q = 2, f(t, CD

1
2
0+x(t)) = 1

4
− 1

20
|CD

1
2
0+x(t)| 12 , h(t) = 1 >

0,
∫ 1

0
h(t)dt = 1.

By Lemma 4.1, we have





CD
1
2
0+u(t) =

1
4
− 1

20
|u(t)| 12 ,

u(1) =
∫ 1

0

u(t)dt.

(5.4)

So, we get

G2(t, s) =





− 2√
π

(1− s)
1
2 +

3
2
[(1− s)−

1
2 − 2(1− s)

1
2 ](1− 2t

1
2√
π

+
4

3
√

π
), 0 ≤ t ≤ s < 1,

(t− s)−
1
2

√
π

− 2(1− s)
1
2

√
π

+
3
2
[(1− s)−

1
2−2(1−s)

1
2 ](1− 2t

1
2√
π

+
4

3
√

π
), 0 ≤ s < t < 1.

Take R0 = 25, a(t) = 1
4
, b(t) = 1

20
, K2 ≈ 0.14356, M0 = 0.6, r = 0.02, t0 = 0. By simple

calculations, we can see that all conditions of Theorem 4.1 are satisfied. Hence, by Theorem
4.1, we can conclude that problem (5.3) has at least one positive solution.



No. 1 Existence of positive solutions for fractional problems with p-Laplacian operator at resonance 15

References

[1] Guo Limin, Zhao Jingbo, Liao Lianying, Liu Lishan. Existence of multiple positive solutions for

a class of infinite-point singular p-Laplacian fractional differential equation with singular source

terms[J]. Nonlinear Analysis: Modelling and Control, 2022, 27(4): 609–629.

[2] Kumar S, Kumar A, Odibat Z M. A nonlinear fractional model to describe the population dynamics

of two interacting species[J]. Mathematical Methods in the Applied Sciences, 2017, 40(11): 4134–

4148.

[3] Zhao Jingjun, Jiang Xingzhou, Xu Yang. A kind of generalized backward differentiation formulae

for solving fractional differential equations[J]. Applied Mathematics and Computation, 2022, 419,

DOI: 10.1016/j.amc.2021.126872.

[4] Mao Shuhua, Gao Mingyun, Xiao Xinping, Zhu Min. A novel fractional grey system model and its

application[J]. Applied Mathematical Modelling, 2016, 40(7-8): 5063–5076.

[5] Ameen I, Novati P. The solution of fractional order epidemic model by implicit Adams methods[J].

Applied Mathematical Modelling, 2017, 43: 78–84.

[6] Arafa A A M, Rida S Z, Khalil M. The effect of anti-viral drug treatment of human immunodeficiency

virus type 1 (HIV-1) described by a fractional order model[J]. Applied Mathematical Modelling,

2013, 37(4): 2189–2196.

[7] Ates I, Zegeling P A. A homotopy perturbation method for fractional-order advection-diffusion-

reaction boundary-value problems[J]. Applied Mathematical Modelling, 2017, 47: 425–441.

[8] Xue Tingting, Liu Wenbin, Zhang Wei. Existence of solutions for Sturm-Liouville boundary value

problems of higher-order coupled fractional differential equations at resonance[J]. Advances In Dif-

ference Equations, 2017, DOI: 10.1186/s13662-017-1345-5.

[9] Xue Tingting, Liu Wenbin, Shen Tengfei. Existence of solutions for fractional Sturm-Liouville bound-

ary value problems with p(t)-Laplacian operator[J]. Boundary Value Problems, 2017, (2017): 1–14.

[10] Chen Taiyong, Liu Wenbin. An anti-periodic boundary value problem for fractional differential

equation with p-Laplacian operator[J]. Applied Mathematics Letters, 2012, 25(11): 1671–1675.

[11] Xue Tingting, Kong Fanliang, Zhang Long. Research on Sturm-Liouville boundary value problems

of fractional p-Laplacian equation[J]. Advances in Difference Equations, 2021, DOI: 10.1186/s13662-

021-03339-3.

[12] Zhou Bibo, Zhang Lingling, Xing Gaofeng, Zhang Nan. Existence-uniqueness and monotone iter-

ation of positive solutions to nonlinear tempered fractional differential equation with p-Laplacian

operator[J]. Boundary Value Problems, 2020, DOI: 10.1186/s13661-020-01414-4.

[13] Hu Zhigang, Liu Wenbin, Liu Jiaying. Existence of solutions of fractional differential equa-

tion with p-Laplacian operator at resonance[J]. Abstract And Applied Analysis, 2014, DOI:

10.1155/2014/809637.

[14] Tang X, Yan C, Liu Q. Existence of solutions of two-point boundary value problems for fractional

p-Laplace differential equations at resonance[J]. Journal of Applied Mathematics and Computing,

2013, 41(1): 119–131.

[15] Leibenson L S. General problem of the movement of a compressible fluid in a porous medium[J].

Izvestiia Akademii Nauk Kirgizskŏı SSSR, 1945, 9: 7–10.

[16] Wang J, Xiang H. Upper and Lower Solutions Method for a Class of Singular Fractional Boundary

Value Problems with p-Laplacian Operator[J]. Abstract and Applied Analysis, 2014, 2010(1085-

3375): 331–336.



16 Journal of Mathematics Vol. 44

[17] Tian Y, Li X. Existence of positive solution to boundary value problem of fractional differential

equations with p-Laplacian operator[J]. Journal of Applied Mathematics and Computing, 2015,

47(1-2): 237–248.

[18] Chen T, Liu W. An anti-periodic boundary value problem for the fractional differential equation

with a p-Laplacian operator[J]. Applied Mathematics Letters, 2012, 25(11): 1671–1675.

[19] Infante G, Zima M. Positive solutions of multi-point boundary value problems at resonance[J].

Nonlinear Analysis-Theory Methods And Applications, 2008, 69(8): 2458–2465.

[20] O’Regan D, Zima M. Leggett-Williams norm-type theorems for coincidences[J]. Archiv Der Mathe-

matik, 2006, 87(3): 233–244.

[21] Jiang W, Yang C. The existence of positive solutions for multi-point boundary value problem at

resonance on the half-line[J]. Boundary Value Problems, 2016, DOI: 10.1186/s13661-015-0514-2.

[22] Yang Liu, Shen Chunfang. On the existence of positive solution for a kind of multi-point boundary

value problem at resonance[J]. Nonlinear Analysis-Theory Methods And Applications, 2010, 72(11):

4211–4220.

[23] Wu Yanqiang, Liu Wenbin. Positive solutions for a class of fractional differential equations at reso-

nance[J]. Advances In Difference Equations, 2015, DOI: 10.1186/s13662-015-0557-9.

[24] Yang Aijun. An extension of Leggett-Williams norm-type theorem for coincidences and its applica-

tion[J]. Topological Methods In Nonlinear Analysis, 2011, 37(1): 177–191.

[25] Yang Aijun, Sun Bo, Ge Weigao. Existence of positive solutions for self-adjoint boundary-value prob-

lems with integral boundary conditions at resonance[J]. Electronic Journal Of Differential Equations,

2011, 11: 99–107.

[26] Zhang H E, Sun J P. Positive solutions of third-order nonlocal boundary value problems at reso-

nance[J]. Boundary Value Problems, 2012, DOI: 10.1186/1687-2770-2012-102.

[27] Chen Y, Tang X. Positive solutions of fractional differential equations at resonance on the half-line[J].

Boundary Value Problems, 2012, DOI: 10.1186/1687-2770-2012-64.

[28] Yang Aijun, Wang Helin. Positive solutions of two-point boundary value problems of nonlinear frac-

tional differential equation at resonance[J]. Electronic Journal Of Qualitative Theory Of Differential

Equations, 2011, 71: 1–15.

[29] Jiang W, Qiu J, Yang C. The existence of positive solutions for p-Laplacian boundary value problems

at resonance[J]. Boundary Value Problems, 2016: 175.

[30] Mawhin J. Topological degree methods in nonlinear boundary value problems[M]. Providence, RI,

USA: American Mathematical Society, 1979.

[31] Podlubny I. Fractional Differential Equations[M]. New York: Academic Press, 1999.

具有p-Laplacian算子的分数阶问题共振正解的存在性

薛婷婷, 姜永胜, 曹 虹

(新疆工程学院数理学院, 新疆 乌鲁木齐 830000)

摘要: 本文研究了具有p-拉普拉斯算子的分数阶微分方程在两种边界条件下的共振正解存在的问题.

利用Leggett-Williams范型定理的方法, 获得了一些新的存在性结果, 推广了该类问题已有的研究结果.
关键词: p-Laplacian算子; Leggett-Williams范数型定理; 共振; 正解
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