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INEQUALITIES FOR EIGENVALUES OF THE
SUB-LAPLCAIN ON THE ENGEL GROUP
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Abstract: The Engel groups are one important kind of simply connected nilpotent Lie groups
in sub-Riemannian geometry. In this paper, we investigate the Dirichlet eigenvalue problem of the
sub-Laplacian Ag on a bounded domain Q of the Engel group E = (R?, 0, {5x}) as follows

(—Ar)%u = \u, in Q,
_Ou  0%u

U—@IW:(L OnaQ,

where v is the outwards unit normal vector field of 9€2. We establish some universal inequalities
for eigenvalues of this problem.
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1 Introduction

A sub-Riemannian manifold is a manifold endowed with a distribution and a fiber inner
product on that distribution. It becomes a Riemannian manifold when the distribution under
consideration is the entire tangential plexus. Sub-Riemannian manifolds have a wide range
of applications, which are closely related to geometric cybernetics, CR manifolds, image
processing and nonholonomic mechanical systems(see [1-7]).

With the deepening of the study of sub-Riemannian geometry, the importance of Carnot
groups gradually emerged. Carnot groups play a role, for sub-Riemannian manifolds, anal-
ogous to that played by Euclidean vector spaces for Riemannian manifolds. Many scholars
have also obtained some important results in this regard (cf. [3, 4, 5, 7]). As an important
topic in geometry and analysis, people have obtained some interesting results on the spec-
trum of Laplace operator. It is natural to consider whether one can extend the results for

Riemannian manifolds to sub-Riemannian manifolds.

* Received date: 2022-10-25 Accepted date: 2023-02-06
Foundation item: Supported by National Natural Science Foundation of China (11001130); Fun-
damental Research Funds for the Central Universities (30917011335).
Biography: Bai Chen (1997-), Male, born at Yanan, Shanxi, postgraduate, major in: differential
geometry.
Corresponding author: Sun He-jun, E-mail: hejunsun@163.com



410 Journal of Mathematics Vol. 43

The Heisenberg group H" is a classical example of Carnot groups. In 2003, Niu and

Zhang [8] considered the following eigenvalue problem of the sub-Laplacian Ag» on a bounded
domain €2 of H"

(= A ) u = M, in Q,
ou ak—lu (1.1)
U—E——W—O, on 89,

where v is the outwards unit normal vector field of Q2. They proved that when k is odd, it
holds

-

Ami1 = Am <mn2§:xf[2n+4) f: —i—C’lnk)Z AT ] (1.2)

i=1

and when k is even, it holds

I &1
Amt = An < =55 > Af

m2n? 4
=1

m

@n+ k> AT

=1

+02(n,k)§m:)\:71], (1.3)

where Cy(n, k) and Cy(n,k) are the constants depending on n and k. In 2010, Ilias and
Makhoul [9] established some Yang-type inequalities for problem (1.1): for any odd k& > 3,
it holds

N|=

=1

{i(Amﬂ—l Ai)? [(2k(n+k_1)) Z_Z +Cy(n, k)()\i—i-)\:Tz)}}

(1.4)
and for any even k > 4, it holds
m 1 m Bt B3 2
Z(Am-l-l - E {Z m+1 [(2}3” +4(k = 1)AN T + Co(n, k)N } }
=t (1.5)

X [Z()‘m+1 - )‘i))‘i%] )

where C;(n,k) and Cs(n, k) are the constants depending on n and k. In 2017, Du, Wu, Li
and Xia [10] consider the following eigenvalue problem of the biharmonic sub-Laplacian on
a bounded domain 2 on a Carnot group G with an d-dimensional sub-bundle

(—Ag)*u = Au, inQ,
(1.6)
U = % =0, on 0f2.
ov

They obtained the following inequality for eigenvalues of problem (1.2)

Z(AmﬂAi>2s<8ddj2>2[§jum+lA»?AE] [Z(AWAZ-)AE] S

i=1
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Since the Heisenberg group H" is a 2-step Carnot group, its generators are interchange-
able with other layers. However, for some more general Carnot groups, their generators are
not interchangeable with any other layer except the last layer. Hence it is difficult to directly
apply the method of [8] to problem (1.1) on Carnot groups with any order.

In this paper, we consider the Engel groups. As a 3-step Carnot group, the generators
of an Engel group E are not interchangeable with the second layer. In recent years, the
research on Engel groups has made some achievements. For example, Ardentov and Sachkov
[11] considered the left invariant sub-Riemannian problem on Engel groups, which plays an
important role in the motion system of mobile robots with trailers. Here we investigate the
Dirichlet eigenvalue problem of the sub-Laplacian Ag on a bounded domain €2 of the Engel
group E = (R*, 0, {§,}) as follows

(—Ag)*u = \u, in Q,
o u (1.8)
U—a—ﬁ—o, On@Q,

where v is the outwards unit normal vector field of 9€2. Set

SP2Q) = {f: £, X:(f), X2(f), X7 (f) € L*(Q),i = 1,2} .
The subspace Sy(Q) of $*2(Q) is defined by

of 0 f

3,2 3,2

’ Q = ’ Q : = = = .

507 (%) {fES (€) : flon 9y 192 (%2|a§z 0

Then we know that (Ag)? is a self-adjoint operator acting on Sg*(Q) with a discrete spec-

trum. Thus problem (1.8) has a discrete spectrum
0<)\1 S)\QS)\mS—>—|—oo,

where each eigenvalue is repeated with its multiplicity (see [12]).

In this paper, we establish the following results for problem (1.8).

Theorem 1.1 Let 2 be a bounded domain on an Engel group E. Denote by \; the
i-th eigenvalue of problem (1.8). Then we have

2

S O = A)? < [Z(Amﬂ — A)2(140A; + 18X7 +8)7)

i=1

S gol=

X [i()\m+1 — )\1))\ ] 2 .

=1

Theorem 1.2 Under the assumptions of Theorem 1.1, we have

-

1 m 1 m 2 1
At = A € —5 S NS (140&- LI8A 4 8A;) . (1.10)
=1

m y
=1
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2 Preliminaries

In this section, we give some preliminary knowledge about the Engle groups and estab-
lish some necessary lemmas.

A r-step Carnot group G is a connected and simply connected Lie group whose Lie
algebra g admits a direct sum decomposition g =g, ® go @ - - - & g,, such that

[01,8i-1]= g, f2<i<r,
[0:,0;]= {0}, if2<i,j<r.

If dimV; = d, we also say that G has d generators. The vector fields Xi,..., X, are called
the generators of G, whereas any basis of span{ Xy, ..., X} is called a system of generators

of G. A sub-Laplacian on G is the second order differential operator defined by

where Y7,...,Y; is a basis of span{ X1, ..., Xs}. In special, Ag = Z?:l X? is the canonical
sub-Laplacian on G. The vector operator Vg = (X1,...,Xy) is called the horizontal G-
gradient.

The Engel algebra b is the finite dimensional Lie algebra with a basis (X1,..., Xy),

where the only non-vanishing commutator relationship among the generators are
{XQ,X:[] :Xg, [Xg,Xl] = [Xg,XQ] :X4, [X4,Xk] :O, k: 1,2,3. (21)
The Engel algebra § is of step 3. In fact, the Engel algebra is stratified as follows

h=bh1 @b D bs,

where b, = span{X;, Xa}, b, = span{X3} and bh; = span{X,}. Thus the Engel group E is
a simply connected nilpotent Lie group associated to the Engel algebra . We can represent
the Engel group E = (R*,0,{d\}) by means of graded coordinates associated to the basis
(X1,...,X4). For any (1,22, %3,24), (Y1, Y2, Y3, ys) € E, it holds

1+
To + Y2
z3 + Y3 + f(@1, 02,91, Y2)
Ty +ys + g(21, T2, T3, Y1, Y2, Y3)

($1,$2,$3,$4) © (y17y27y37y4) =

where f and g are two polynomials. Moreover, the homogeneous dilations on E are
5,\<$1,$2,$3,$4) = ()@17 AT, )\2173, )\31’4%

where A > 0. The polynomials can be different in different application scenarios (see [13, 14,
15, 16]). Depending on different f and g, the rappresentation of the basis (X1, X, X3, X4)
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on the graded coordinates is given as follows

X\ (or.amman) — D O D 09 D
PV 2 5 _8:151 8$38$3 8$48$47

0 0f 0 990

dxy | Ory Oxy | Do Oz

X2(17171’27173,$4) =

0 dg 0O
X3(x1, 22, 3, 24) = Ora 3—533—354’
0
X4(.CU1,£U2,$3,.’E4) = 87
4

The horizontal E-gradient Vi on the Engle group E is defined by Viu; = (Xju;, Xou;). The
sub-Laplacian on E is defined by
Ag = X2+ X2,

For simplicity’s sake, we denote —Ag by L .
In order to prove the main theorems of this paper, we first give the following lemmas.
Lemma 2.1 Let € be a bounded domain on the Engel group E. Denote by w; the i-th
orthonormal eigenfunction of problem (1.8). For p = 1,2, we have

» T
Q Q

Proof Using Holder inequality, we have

/Quim < </Q uf)é (/Q(]Luif)% . (/Q ul-]L2ui>2. (2.3)

Then it is from (2.3) that

Q Q
() ([
Q Q
Q Q
Q Q
Lemma 2.1 is proved.

Lemma 2.2 Under the same assumptions of Lemma 2.1, we have

Nl
N

/ Xyl Xgu; < A / (Xaus)?. (2.4)
Q Q
Proof Using Holder inequality, and noticing that

/(X4]L2’U,i)2 :/X4L4uiX4ui :AZ/XAL]LUZX;;UZ,
Q Q Q
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we deduce

/Q Xy Lu; Xqu; < [ / (X4 Luy,) ] [ /g (X4ui)2]2 l
< / ]LulX4ul> [ /Q (X4u:)2]2
<[] [foxw]

= A </ X4]LulX4uz>4 [/Q(Xwi)?} "

It yields (2.4). The proof of Lemma 2.2 is finished.

o~

=

(2.5)

3 Proofs of the Main Results

In this section, we give the proofs of Theorems 1.1 and 1.2.
Proof of Theorem 1.1 Fori=1,...,m and j = 1,2, take the trial functions

m

Piz; = TjU; — g Ajla ;UL

1=1
where a;,;, = fQ xjusuy. It is easy to find that ¢, is orthogonal to ui,...,u,. According
to the Rayleigh-Ritz principle, it holds
fQ Wiz, L?)%Ij

)\erl S 2
fQ SO’L':EJ'

, for j=1,2. (3.1)

Since fQ U piz; = 0 and

m+1 / (szj <
Q

S~

ul]L3(:EJuZ) = / xjui]L3ul = NGz, , we obtain
Q

3
i, L7 (T5u;) )\i/xjuisoixj
Q

M

Il
-

TjUsg []L3($Jul) — )xlzvjul] —

iz, / wy L2 (jui) — Nicjus)
Q

(2

I
S S e

M

TjUsg []L3($Jul) — Alxjul] — afle ()\l — >\z)

i=1

(3.2)
Noticing that
X12(.’E1’LLZ) :2X1UZ + .’E1X12U“ X%(:Uluz) = $1X22UZ, (3 3)
X12<.ZE2’LL1) =$2X12Ui, XQQ(SL’Q’L%) = 2X2’LL1 + SE'QXQQUi, .
we deduce

LQ(SL’J'UZ') = ]L(l'JLUl - 2Xjui) = .ZEjLQUi - 2LX7U1 - 2XJLU1 (35)
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Therefore, we can get

]LB(.’EJ"LLZ') :]L(fﬁj]L2ui — 2LXJ’LLZ — 2XJ]L’U/Z)

(3.6)
:.ZUJ‘]Lgui - QLQXJ‘UZ' - 2]L)(J]L”LLZ - 2Xj]L2Ui.
Then we have
Q Q
According to the properties in (2.1), it is not difficult to find that

]LXl - Xl]L - 2X2X3 - X4, (38)
LX; = X0l + 22X, X3 + X4, (3.9)
]LXg :X3L+2X1X4+2X2X4 (310)

Then, for j = 1,2, we obtain

/ :Ujul-(]L?Xj + ]LXJ]L + XjLQ)’U,i
€

2
:/Xjui]L2(ijUi>+/XjLUiL(SE‘jUi>+/£EjUin]L2Ui
Q Q Q

:/ Xjui(zvj]Lzui — 2Xj]Lui — QLX]’L%) + /(.ZEJL’LM — 2)(J’LL1)AX']]LUZ + / in’LLin]L2Ui
Q Q Q

= / (.’Ej]L2’LLin’U,i + .’EJ]L’U/ZXJLUZ + .’Ejuin]LQUi) + 4/
Q

5 Luleul — 2/ ]LXjuinuiu

? (3.11)

Moreover, since

/(.’Ej]L2’LLin’U,1‘ + ij’UllXJ]LUZ + xjuin]L?ui)
Q

Q Q

U1L2UZ/$ZXJU1]L2UZ
Q Q

= — 3/ UiLQUi — /(.ZEJ‘LQUZ'XJ‘UZ' + iUJL’LLlX]L’LLl + in’LLin]L2Ui),
Q Q

(3.12)
we obtain
/(ijQUinUi + oL X Lu; + o0 X L% ;) = —g / u L. (3.13)
Q Q
Therefore, substituting (3.11) and (3.13) into (3.7), we obtain
/ TjU; []Lg(xjui) — )\iinUi] < /(3uiL2ui — 8]Luin2ui + ALXu; X u;). (3.14)
Q Q

On the other hand, from 2/
Q

Q

Ui XU = 2/ ui + 2/ ;Ui X u;, we get
Q Q
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Set t;; = fﬂ u; Xju;. It is easy to find that ¢;; = —t;;. Then we have

_ 2/ (Piijjui = 2/ UZXJ(.’EJUZ) — 220@&]. / ’U,in’U,l =1 =+ QZaqutﬁl. (316)
Q Q =1 Q

Multiplying both sides of (3.16) by (A,41 — \i)?, we get

(Aerl 1 + 2 Z azl:c j'Ll (>\m+1 >\ ) / (Plx (X Uy — Ztﬂlul

=1
3 2 )\m+1
S 5(>\m+1 - )\1) @ixj +t 5 X jUi — Ztﬂlul
Q

Then, using (3.2), we get
Ama1 — A)*(1+2 Z Qite; tjit)
=1

Q Q

m
- m+1 E 1lm - m+1 E t]zl

=1

Substituting
Am1 — X)*(1+ QZ itz tjir) = (Ama1 — Ai)? 4 2(Aigr — Z Al = Xi) it L
=1 =1
and
52()” zl:c 5 thll > 22 )‘l azlm] Jil
=1

into (3.17), we deduce

(Aerl — )\1)2 S(S()\erl — )\1)2/ .fL'j’U,i []LS(.’EJUZ) — )\Z.CL'J’Uq]
@ (3.18)
(s =2 [ (i
Q

+

Sl

Taking sum on 4 from 1 to m, j from 1 to 2, and using (3.14), we obtain
2
2 Z( m+1 — <5 Z m+1 — i>2 Z/ (BUiLQUi - 8]LUZXJ2’LL1 + 4LX7’LL1X7UZ)
— =1 /e
m 2
£33 0= Y [
=1 = Q

(3.19)

0«1|*—‘
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Now we estimate the term fQ(LXluinm + LXou; Xau;). From (3.8) and (3.9), we get

/(]LXluleul + LXQ’LLng’LLl) = / (XlL’LLle’LLl — 2X2X3’LtiX1’LLi — X4’LL¢X1’LL¢>
Q Q

+ /(XQ]L”LLZ'XQUZ' + 2X1X3UiX2Ui + X4UiX2Ui)
Q
:/ |:’U,JL2’LLZ + X4’U,1‘X2’U/i — X4’U,1‘X1’U/i + 2(X3U1)2j|
Q

:/ Ui]LQUi + /<X4UiX2Ui —X4UiX1Ui) +2/
Q Q

Using mean value inequality, we have

/(XBUi)2 = —/ Xyu; Xo Xgu; + / Xou; X1 X3u;
Q Q Q
1 1
S 5 / {(X1u1)2 + (XQXgqu')2] + 5 / KXQ’LLZ)2 + (Xngui)Q]
Q Q
1 1
= — ui]Lui + = LX3’LL¢X3’LL¢
2 Q 2 Q
and

/(X4UiX2Ui - Xyu; Xqu;) <
Q

/UlLUl+/<X4UZ>2
Q Q

Moreover, it is easy to verify that
2/ X1X4’LLZ'X3’U,1' = 2/ X2X4’LLZ'X3’U,1' = /(X4’LLZ)2
Q Q Q
Then, using (3.10) and (3.23), we obtain
/LXgungui :/(Xg]L’Ulngul + 2X1X4U1'X3'U/1‘ +2X2X4U1X3UZ)
Q Q
:/X3LU1X3U1+2/<X4UZ)2
Q Q
Therefore, substituting (3.21), (3.22) and (3.24) into (3.20), we get

Q

3
UZL2UZ+—/U1LU1+/Xg]LUZXg’LLZ
Q 2 Q Q

+ 3 / (X4’LLZ')2.
Q

N = N =
s
&g
e
+
o
£
S
+
|
s
&g
e
+
2
&g
S

(X3Uz')2,

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)
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Using mean value inequality and Lemma 2.2 , for any positive ¢ and §, we have

/<X4Ui)2 = / X1X4UiX3Ui + / X2X4UiX3Ui
Q Q Q
) 1/1 8
0. 1 1/1 €
< SA Xau; — [ LX3u; X3u; + - L | .
_21/( aui)? + 5<2€/Q 3U 3u+2/ﬂu u>

It yields
- 20 [ (w2 < [ LXouiX c L
~ a Uy = i i AUy .
2/ J 20¢ suidatti a5 J !
Taking %)\% =sande= 5)\1-% in (3.26), using Lemma 2.1, we get
9 2
Q 5 Ja
And

/Xg]Lungui:—/XlLuiX2X3u3+/X2]LuiX1X3ui
Q Q Q

(3.26)

(3.27)

) 1 ) 1
2/(X1]LU1) 10/(X2X3’U,1) 2/9(X2]L’U,1)2 10/(X1X3’U,1)
1

10 ]LXg’LL X3’U/1+ )\

It is from (3.24), (3.27) and (3.28) that
/LX3U1‘X3U1‘ S 25)\1
Q
Then, combining (3.29) with (3.27), we derive
/<X4Ui>2 S 10)\1
Q
Substituting (3.29) and (3.30) into (3.25), and using Lemma 2.1, we have
3
Q Q Q
<A+ ;Af +35),.

Notice that
2

Z/(Xjui)Q = / Ui]L”LLi S )\z%
Q Q

J=1

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)



No. 5 Inequalities for eigenvalues of the Sub-Laplcain on the Engel group 419

Substituting (3.31) and (3.32) into (3.19), and using Lemma 2.1, we obtain

22( 1 — <5Z 1 — <140)\ L8N 4 8AT ) %i 1 —

(3.33)

{221()‘77%1 - Az‘)Af] ’

[ O = 202 (1400 + 18] + 837 )|

5:

n (3.33), we derive this which completes the proof of Theorem 1.1.
Now we give the proof of Theorem 1.2.

Proof of Theorem 1.2 Similar to the proof of Theorem 1.1, take the trial functions

m
ig, = TjU; — Y iig, Uy, Where a,, = fﬂ zjuu, t =1,...,m and j = 1,2. According to
-1

I=
the Rayleigh-Ritz principle, we deduce

A1 / Or, < / iz, (@5 L%0; — 217 Xju; — 2LX ;L — 2X1L%0:) = As Y i, / WPia,
Q

=1

:)\z/ Sofm] — 2/ QOZ'I]. (L2Xj +]LXJ]L + XjIL?)’U,i
Q Q

(3.34)
Then it implies

A1 — ZZ/ 92, < —222/ 0ir,(L°X; + LXGL 4+ X;L%)u;.  (3.35)
=1 j5=1 =1 j5=1
Substituting

ailmj / Ul(LQXj + LXj]L + Xj]LQ)’LLi =0 (336)
Q

il=1

0 (3.36), we derive

m 2
Ami1 — ZZ/QO”J_—QZZ/SL’UZ]LX + LX,L + X;L2)u,
Q

=1 j=1 =1 j=1

:—ZZZ/ LEJ]L w; Xu; + ojLlu X;Lu; + zju; X L2u,)

=1 j5=1
SZZ/]LUXQUZ+4ZZ/]LXUXU1
i=1 j=1 i=1 j=1

(3.37)
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Therefore, similar to the proof of Theorem 1.1, we get

m 2 m
At = Am) 3> / 0l <Y (6 / wL?u; + 8 / wL?u; + 4XF + 83 + 140)\1->
Q 1 Q Q

i=1 j=1

<y <14O)\Z— +18A7 + 87 ) .
1=1

(3.38)
Since agiz; = aiiz; and fQ u; XU = — fQ w Xju;, one can easily verify
m m m
E ailmj/ulXjui: E amj/uinUlZ— E aile/ulXjui~
il=1 Q2 il=1 Q2 il=1 Q
It implies

Z il / wXju; = 0. (3.39)
Q

il=1

Then it is from (3.39) that

Z/ Pia; XjUi = _Z/U?_Z/IjuinUi = —m—Z/ Pia; X jUi- (3.40)
i=1 /@ i=1 79 i=1 79 i=1 79
Thus it holds

> [ o Xy =5 (3.41)
— |, 2
i=1

Using (3.41) and Holder’s inequality

m=— Z /Q(ﬁplelui + iz, Xou;)
i=1

<3 [+ R [+ (o]
i=1 Y&

< [Z /Q (i, + ¢Fe,)
i=1

1
2

(; /Q ui]LuZ) s

and using Lemma 2.2, we obtain m < [Z Jo (02, + gpfmz)} (Z A > . Hence it yields
=1 i=1

ol

i=1 78 EZI A
Substituting (3.42) into (3.38), we get
1 & 2 1\ e— .1
Amit = Am € —5 3 (140& L18AF 4 8A;> SN (3.43)
i=1 i=1

This finishes the proof of Theorem 1.2.
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