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Abstract: In this paper, we research the boundedness of two-dimensional maximal operator
of Vilenkin-like system on Hardy spaces. By means of atomic decomposition, the two-dimensional
maximal operator To f := SUPy-a¢ n ¢ga |f * Pam| is bounded from H” to LP, where 0 < p < i

and o > 0. As an application, we prove the boundedness of two-dimensional operator &*f =

SUPg—ag 2 <oa W By a counterexample, we also prove that two dimensional maximal
operator 6*f = sup % is not bounded from H? to L?, where 0 < p < % The

n,meN [
results as above generalize the known conclusions in Walsh system or in Vilenkin system.
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1 Introduction

The weak type inequality for maximal operator of Fejér means for trigonometric system
can be found in Zygmund [1], in Schipp [2] for Walsh system and in Pal, Simon [3] for
bounded Vilenkin system. Later, Schipp [2] showed that maximal operator o* f := sup |o,, f]|

is of weak type (1,1), from which the a.e. convergence follows by standard argument. Snchipp’s
result implies by interpolation also the boundedness of ¢* : LP — LP(1 < p < o0). This
fails to hold for p = 1, but Fujii [4] proved that o* is bounded from the dyadic Hardy space
H' to L' (see also Simon [5]). Fujii’s results were extended by Wesiz [6],[7] to H? spaces
for 1/2 < p < 1, in the two-dimensional case, too. Simon [8] gave a counterexample, which
shows that boundedness of o* does not hold for 0 < p < 1/2. The counterexample for o*
when p = 1/2 is due to Goginava [9]. Goginava [10] proved that the maximal operator ¢*
defined by

ok p |O'nf‘
0 f = sup —5——
neN log”(n + 1)

is bounded from the Hardy space H'/? to the space L'/? for Walsh system. He also proved,
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that for any nondecreasing function ¢ : N — [1, 00), satisfying the condition

log? 1
Foog (D),

the maximal operator

neN Sﬁ(n)

is not bounded from the Hardy space H'/? to the space L'/2. Tephnadze [11] generalized
this result and proved the boundedness of

cup L7011
nek (1)1

is bounded from the martingale Hardy space H? to the space L?, where o, f is n-th Fejér
mean with respect to bounded Vilenkin system for 0 < p < 1/2.

In this paper the two-dimensional case will be investigated with respect to Vilenkin-
like system. We show that the boundedness of some maximal operators. Throughout this
paper, we denote the set of integers and the set of non-negative integers by Z and N,
respectively. We use c,cp,C), to denote constants and may denote different constants at

different occurrences.

2 Definitions and Notations

Let m := (mg,mq,- -+ ,myg, -+ ) be sequence of natural numbers such that my > 2(k €
N). For all k£ € N we denote by Z,,, the my-th discrete cyclic group. Let Z,,, be represented
by {0,1,---,my — 1}. Suppose that each (coordinate) set has the discrete topology and the
measure py, which maps every singleton of Z,,, to 1/my, (ux(Z,,,) = 1) for k € N. Let G,,
denote the complete direct product of Z,,,’s equipped with product topology and product
measure p, then G,, forms a compact Abelian group with Haar measure 1. The elements of
G, are sequences of the form (xg, 1, ,zy, ), where xy € Z,,, for every k € N and the
topology of the group G,, is completely determined by the sets

1,(0) := {(zo, 1, - , Tk, ) EGp i, =0 (k=0,--- ,n—1)}

(Ip(0) := G,,). The Vilenkin space G, is said to be bounded if the generating system m is
bounded. We assume ¢ = sup,{m,} < oo.

Let My := 1 and My, := mpMy for kK € N, it is so-called the generalized powers.

o0

Then every n € N can be uniquely expressed as n = > npMy,0 < np < mg,np € N.
k=0

The sequence (ng,ny,---) is called the expansion of n with respect to m. We often use

the following notations: |n| := max{k € N : n;, # 0} (that is, M,] < n < Mj,4+1) and
n(k) = Z ’I’Lij.
j=k
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For k € N and x € G,,, denote 7 the k-th generalized Rademacher function:
ri(x) == exp(2mﬂ) (x € Gyt :=vV—1,k € N).
my

It is known that for x € G,,,n € N

S () = { 0 ifw, #0, (2.1)

P m, if x, =0.

Now we define the 1,, by

o0

Yy = HTZ" (n € N).

k=0
Then {¢,, : n € N} is a complete orthonormal system with respect to u.
We introduce the so-called Vilenkin-like (or ¢a) system (see [12]). Let functions a,, af :
G — C(n, j, k € N) satisfy for all 2,y € G,,:

(1) a‘;? is measurable with respect to ¥, and af(m +y) = Oz‘;?(x)a’?(y);

J
(2) lof|=af(0)=a;=a=1 (j,keN);
3) ani=][Jor” (neN).
7=0

Let xpn := Ypa, (n € N). The system x := {x, : n € N} is called a Vilenkin-like (or
o) system.
Define Dirichlet kernels and Fejér kernels with respect to Vilenkin-like system and

Vilenkin system as follows.

Dy(y,2) = > xx@)Xu(z),  Dalz) =D v(x),
k=0 k=0

Koly,2) = 3 Dulya)s Kule) = 3 Dil).
k=0 k=0

It’s well known that

M, ify—=xel,,

DMn(y7x):DM"(yx):{ 0 ify—zeG\I

Moreover for y,xz € Gy,

mj—l

Dy (y, ) = an(y)an(x)Dn(y — ) = xn(y)in(l’)(z Duy(y—x) Y. rhiy—=2). (23)

k:m]‘ —Nny

k
J

(x)a®

Since o (x 4+ y) = o G(y) and rj(x +y) = rj(z)r;(y), we have

Xn(W)Xn(T) = Xa(y =2+ 2)Xn(T) = Xn (Y — ) Xn(®) Xn ()
= Xa(¥ = 2) X (@)]* = Xy — 2)Xn(0). (2.4)
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Thus we obtain
D,(y,x) = D,(y—2,0) and K,(y,z)=K,(y—z,0). (2.5)

Now we define xn.m(7,y) = Xn(®)Xm (), (r,y € Gp). If f € L' then the number
f(n,m) = E(fXnm) is said to be the (n,m)-th coefficient of f with respect to system Y.
Denote by S, f the (n,m)-th partial sum of the Fourier series of a martingale f with

respect to character system x, namely,

It is easy to see that
SMn,Mmf == fn,m-

Let F,, m(n,m € N) be the o-algebra generated by the rectangles I, ,,,(x,y) := I,,(z) %
I, (y),(z,y € Gy,). A sequence of integrable functions f = (f, m;n,m € N) is said to be
a martingale if f, ,, is F, ., measurable for all n,m € N and Su, ., fxg = fom for all
n,m, k,l € N such that n < k and m <.

We say that a martingale f = (fnm;n,m € N) is LP-bounded if || f|, := sup,,, |
frmllp < oo. The set of the LP-bounded martingales will be denoted by L?(GZ)).

The diagonal maximal function of a martingale f = (f,.m;n,m € N) is defined by
[ = sup|fanl
neN

It is easy to see that in case when f is an integrable real valued function given on G2,

the above maximal functions can be computed for all x,y € G,, by
7 (a.y) = sup | fl
T,y) = sup ———— .
neN |In,n(xa y)| Iy n(z,y)

Define the spaces H?(G?)) of Hardy type as the set of martingales f such that

[l ez, = (1]l < oo

The martingale Hardy spaces HP(G?)(0 < p < 1) have atomic characterizations. A
bounded measurable function a defined on G2, is a p-atom if a = 1 or there exists a dyadic
square I such that

supp a C I, ||a||e < |I|1/p,//a=O.

We shall say also that a is supported on I. Then a martingale f = (f, m;n,m € N) is in
HP(G?)) if there exists a sequence (ag, k € N) of p-atoms and a sequence (Ag, k € N) of real

numbers such that > [Ax|P < co and
k=0

> AeSutar,ar = fan (0 €N), (2.6)

k=0
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Moreover, c, inf(Y_ [MeP)V? < [|fllar < Cpinf(>] [Ak|P)Y/P, where the infimum is taken
=0 k=0

over all decomposi_tions of f of the form (2.6).

Next we will consider the boudedness of operator 6*f and 6* f in the two-dimensional

Vilenkin-like system, where 6* f =  sup % ,6*f = sup [(n+1)‘(:7;3:11])‘]‘1/2r1‘

2oL L2 n,meN

3 Some Lemmas

Lemma 3.1 ([13]) Suppose that the operator 7" is sublinear and for 0 < p < 1, there

exists a constant C),, > 0 such that

/ \ Tal” < Cp, (3.1)
G \I

for every p-atom a € HP supported on the dyadic interval I. If T is bounded from L* into
L# for some 1 < s < 00, then

ITfllp < Collflme (f € H' N LY.

If (3.1) is true, T is called p-quasi-local.

Lemma 3.2 ([13]) Let 0 < p < 1,1 < s < oo and assume that the sublinear operator
T is p-quasi-local and (L%, L®)-bounded. Then T': H*¥ — L*" is bounded for all p < u < s
and 0 < v < oo. Especially, T is of weak type (1,1).

Further we assume that for all n € N the kernel P,, € L™ is given such that sup || P,[|; <

oo. If we consider the maximal operator
Tf:=sup|f*P,| (feclLb,

then T': L* — L is evidently bounded. Therefore, if T is p-quasi-local for some 0 < p < 1,
then Lemma 3.2 can be applied to T

Lemma 3.3 If P, is a summation kernel, i.e. with suitable real coefficients A\, x(n, k €
N)

Py(2,0) = > Asxn(,0) (n€N),
k=0

then the assumption

1
/ ( sup / |P,(x —t,0)|dt)Pdz < Cp,—— (n € N) (3.2)
G/yn\IN n>Mn In MN
implies the p-quasi-locality of T
Proof Indeed, to prove (3.1) let a be a p-atom supported on the interval I. Without
loss of generality we can assume that I = Iy for some N € N. Then a * P, = 0 holds for all
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n=0,..., My —1, since the functions xx(k =0,..., My — 1) are constant on I. Therefore,

Ta = sup |ax* P,| and thus
n>Mpn

/ (Ta(z))Pdx = / ( sup | a(t)P,(x — t,0)dt|)Pdx
Gm\INn G

m\IN nzMn In

< Jal2. / ( sup / P(e — 1,0)|db)de
Gm\IN nzMn In

< MN/ (sup/ | P, (z —t,0)|dt)Pdx. (3.3)
Gm\IN nzMn In

Hence, (3.1) follows from (3.2) and (3.3).
Lemma 3.4 ([14]) Let z € Iy',k=0,--- N =2 1=Fk+1,--- ,N —1and n > My.
Then

CM[Mk
Kon(z —t,0)|du(t) < 222k 3.4
|t = o < S (3.4
Let z € IvN k=0,---,N —1 and n > My. Then
M,
/ K (= — £, 0) dpu(t) < Sk (3.5)
In My

where c is an absolute constant and

gt _ ] NG00, £0,00 0,0 # Oy, oe) R <IN,
N In(0, -+ ,0,25 # 0,231 =0, ,any_1 =0,zx---) ifl=N.

Lemma 3.5 ([14]) Let 2< A€ N,k <s<A,n’ := Moa+ Mopg_o+---+ My+ M.

Then we have
M2kM25

1
for 2 € 2h* k=0,1,--- ,A=3,s=k+2k+3,---,A—1.

If I :=1 x J is a dyadic square and let I" := I" x J". Then it is not hard to see that
the definition of the p-quasi-locality of T' can be modified as follows: there exists r =0,1...
such that

Ky (2,0)] 2

/ \ |Tal” < C, (3.6)
G2 \I™

holds for every p-atom a supported on the dyadic square I.
Let P, ,(n,m € N) be the Kronecker product of P, and P,,, i.e. P, (21,0, 22,0) :=
P,(z1,0)P,,(z2,0) and for a fixed « > 0 define T,, by

4 Formulations of Main Results
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Theorem 4.1 Assume (3.2) for a given 0 < p < 1. Then T, is p-quasi-local.

Proof It is enough to prove (3.6) with a suitable r € N. To this end let a € L>=(G?))
be a p-atom. We can assume that a is supported on the dyadic square Iy x Iy for some
N € N. Furthermore, it follows that a * P, ,, = 0 when n,m < My. Therefore, to compute

T,a = sup  |a * P,,,| it can be assumed n > My or m > My. In the first case
2-agm 20

> My_,, whlle in the second case n > My _, follows. In other words, we get the estimate

Toa <  sup |ax*P, .,
nm2Mpn

2
where 7 € N is determined by r — 1 < a < r. Here, ||a]|oo < M} implies

Toa(z,y) < sup |/ / a(u, )Py (u — x,0) Py, (v — vy, 0)dudv|
In N

nm2Mn_,
< M} sup / | P, (u — x, 0)|du/ | P (v —y,0)|dv. (4.1)
nm2Mn_r JIy In

Therefore, to verity (3.6) it is enough to show that

/ ( sup /|Pn(u—:v,0)|du/ | Py (v —y,0)|dv)Pdedy < % (4.2)
G\( In M

P \NUN—rXIN_7) nm2Mn_r In N

To this end let us decompose the double integral in question as follows:

G2 \(IN—rxIN_+) n,m}MN,T In In

= [ s [ ipte= o [P vo)idrday

Go\n—r J Iy nm=My . J1y In

+/ / ( sup / |Pn(u:v,0)|du/ | P (v — y,0)|dv)Pdxdy
IN_, Gm\IN,T nm2Mn IN In

s [ C e [ R0l [ (Pt 0l daay
Gm\INfT G7n\IN77‘ n’mgMN*"' IN IN
= Al + A2 + Ag. (43)

Here A; can be estimated in the following way:

A < / ( sup / |Pn(u—a:,0)|du)pd:v/ (sup/|Pm(U—y,0)|dv)pdy
Gm\IN,T n2My_r IN I ™ G
< [ Cow [ IR 0)ldordslis o 2]

G \IN—r n2Mn—r JIn

< - / ( sup / Py (1 — 2, 0)|du)dz. (4.4)

p
MN Gm\INf.,‘ n2Mn_r In_,

Thus we get

11 c,
SR SV TR VS
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The estimate Ay < E—Z can be derived similarly. Finally, applying (3.2) twice the
N
estimation

Az < (/ ( sup / |P,(u — x,0)|du)Pdz)* < C L

P2
G \IN_r kZMN_r JIN MN

(4.5)

follows, which proves Theorem 4.1.

Theorem 4.2 Let 6*f = sup % Then for all 0 < p < 1/2 we have
2-agm e

15" fllp < Collflln (f € LP(GF))-

n

Proof Let P,( kZ:O nH)l/p ————— K, (2,0). By Theorem 4.1, it is enough to prove
(3.2) for P,(x,0). Let z € IN ,0< k<l<N. From Lemma 3.4 and 1/p — 2 > 0 we get

1 1 MM, M; M,
sup VATV |Kn<2—t, 0)|dt§ C 1/p_2 Lk SC ll/k. (46)
My (n+1)1P72 MyP™2 nMy = P

Thus we obtain

/ ( sup / |P,(z —t,0)|dt)dx
G \In nZ2MnN JIy
1
/Gm\IN <n>1vII)N (n+1)t/p=2 /IN | K ( )|dt)

N-2 N-1 m;—1

1
- Z Z Z ( sup 71/ | K, (x —t,0)|dt)Pdu(z)
Jp—2
k=0 l=k+1 szo,jG{Li’l,---,Nfl} I;«l n>Mpn (n + 1) p In
N-1 1
+ Sup 77— K, (x —t,0)|dt)Pdu(z
ko/ﬂvN<n>1vII)N<n+1)1/p 2/IN| ( )dt)du(z)
< CN_QNZ_:I my mel(Mle)p_FN_lL(MNMk)p
- 1/ 1/
k=0 I=k+1 My My? o M M
N—2 N-1 N-1
(M, My,)P 1
< — (M~ M.)P
< ¢ VoM Z Mzgv( N M)
k=0 I=k+1 k=0
1 (N72 N-1 1 (MM, +N71 1 (MNMk)p)
= e -2 2 =) 3
My k=0 I=k+1 M, ! Mlp k=0 My i MNp
N-2 N-1 N—1
1 1 1
- CM—N< 2(1—2p)! + Z 2N(1—2p))
k=0 I=k+1 k=0
- | N2 1 N
N CM—N(k ‘ 2(1-2p)k + 2N(172p))
c
S e A7
= My’ (4.7)

which complete the proof of Theorem 4.2.
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By Lemma 3.2 and Theorem 4.2, we easily get Theorem 4.3, we omit the proof.
Theorem 4.3 Let 0 < p < 1/2. Then ¢* : H“*(G?) — L*“"(G?,) is bounded for all
p<u<ooand0<v < oo. Especially, 6* is of weak type (1,1).

Theorem 4.4 TLet 0 < p < 1/2. Then the two dimensional maximal operator ¢*

defined by 6*f = sup [(n+1)‘(27113:11])‘j‘1/2pfl is not bounded from H?(G?,)) to LP(G2)).
n,meN

Proof Let A& N and

fA($7y) = (DM2A+1 (lU, 0) — D,y ($70))(DM2A+1 (y7 0) — D,y (y70))

It is simple to calculate

. 1, ifi,7 = Myga, M- 1,---, M- -1
Fali g) = , 11,7 . 24, Maa + 1, y Moata (4.8)
0, otherwise
and
(Dk($70) _DMzA(xa 0))(Dl(y70) _DMzA(y7 0))7
if k,1 = M4, M- 1,---, M. -1
Si(fasz,y)) = 1 ) 24, Maa + 1, y Mo a1 (4.9)
fA('ray)7 if k7l2M2A+l
0, otherwise.
We have
f:x = S‘;CIP|SMk,Mk(fA7$7y)| = |fA(x7y)|7
[fallae = [ fill, =l fallp
p p e
= (/ (DM2A+1 (SL’, 0) - DMzA (:E,O)) dit/ (DM2A+1 (y,O) - DMzA (ya 0)) dy)
G7n Gm
» 2/p
= </ (DM2A+1 (‘T) — D, 4 (‘T)) dl’)
Gm
p p 2/
= ([ 0un@ D@t [ (Do) - D))
Ioat1 Toa\I2a+1
< [M2an M2, + (maa — 1)PM3y .0,
M1 Myaq
< cMVP),
Since

Disna(@,0) — Dary (@, 0) = Xz, () Di(, 0) (4.10)
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we have

5 |0n mfl n*,n*
fo= ’ > _ T mama
T T D+ opT 2 A G|
nh—1nj—1

- T T & X Sl

=0 j5=0

ni—1 ni—1

= S; f
* \2 * 1/p 2) | Z Z i,jJ A

( ) <nA T 1 i=Maa+1j=Mza+1

Maa41—1 Maay1—1

= (nZ)z(nZ—i-l 1/p 2)| Z Z ‘T 0) DMA(‘T’O))(Dj<y70)_DMA<y70))‘

i=Maa+1j=Mza+1

ni_—1lni_,—

= (712)2(”2‘1'1 1/p 2)| Z Z ’L+MA Z, 0) DMA($7O))(Dj+MA(y7O)_DMA(y7O))‘

(n_1)?
= W D Ky (2,0)Ky (y,0)]. (4.11)
Let ¢ = sup,{m;}. For every | = 1,---,[3log,(VAY/?)] —1 ( A is supposed to be

large enough) let k; be the smallest natural numbers, for which M4V Al/2P q;/p < Mfkl <
My sV A2 —dos holds.

SUPPOSG zyy € IV o= Tha(0,--+ 0, 205, # 0, 208,41 # 0, 22511, ,224-1), then by
Lemma 3.5 we have

Ak (n*A—l)2
o > (nz)g(nz_i_ 1)(1/1),2)|KHZ,1($7O)KH*A,1(y70)‘
(May, Moy, 11)? > e (Mg, Moy, +1)? 1 Al/2p
(nZ)Q(nZ + 1)(1/11*2) (MQA) (MQA)(I/p 2) — (MQA)(l/pﬂ) gi/r
Thus

[ log,(VALY2P)| =1 map, 13—1  moa_q1—1

ke plip 1 VA klkl+1
le=fll; = <WF)( Z Z Z 154

=1 T2k, +3= 0 T24-1=0
(4 log, (VAT/2P)] 1
> (71 £)( ' Z m2kz+3"'m2A—1)z
- (MQA)(172p) q4l M2A

=1
A [1 log, (VA1/2P)]—1

1 1
> 2
R T
1 log, A , 1 )
> OE AL g e (4.12)

Then
o £l sz 1ogs A)°
[Fallf = enigy?

= (log, A)* — oc. (4.13)
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Thus the proof of Theorem 4.4 is complete.
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