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Abstract: In this paper, we research the boundedness of two-dimensional maximal operator

of Vilenkin-like system on Hardy spaces. By means of atomic decomposition, the two-dimensional

maximal operator Tαf := sup2−α6 n
m

62α |f ∗ Pn,m| is bounded from Hp to Lp, where 0 < p < 1
2

and α ≥ 0. As an application, we prove the boundedness of two-dimensional operator σ̃∗f =

sup2−α6 n
m

62α
|σn,mf |

[(n+1)(m+1)]1/p−2 . By a counterexample, we also prove that two dimensional maximal

operator σ̂∗f = sup
n,m∈N

|σn,mf |

[(n+1)(m+1)]1/2p−1 is not bounded from Hp to Lp, where 0 < p < 1
2
. The

results as above generalize the known conclusions in Walsh system or in Vilenkin system.
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1 Introduction

The weak type inequality for maximal operator of Fejér means for trigonometric system

can be found in Zygmund [1], in Schipp [2] for Walsh system and in Pál, Simon [3] for

bounded Vilenkin system. Later, Schipp [2] showed that maximal operator σ∗f := sup
n

|σnf |
is of weak type (1,1), from which the a.e. convergence follows by standard argument. Schipp’s

result implies by interpolation also the boundedness of σ∗ : Lp → Lp(1 < p 6 ∞). This

fails to hold for p = 1, but Fujii [4] proved that σ∗ is bounded from the dyadic Hardy space

H1 to L1 (see also Simon [5]). Fujii’s results were extended by Wesiz [6],[7] to H p spaces

for 1/2 < p 6 1, in the two-dimensional case, too. Simon [8] gave a counterexample, which

shows that boundedness of σ∗ does not hold for 0 < p < 1/2. The counterexample for σ∗

when p = 1/2 is due to Goginava [9]. Goginava [10] proved that the maximal operator σ̃∗

defined by

σ̃∗f = sup
n∈N

|σnf |
log2(n+ 1)

is bounded from the Hardy space H1/2 to the space L1/2 for Walsh system. He also proved,
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that for any nondecreasing function ϕ : N → [1,∞), satisfying the condition

lim
n→∞

log2(n+ 1)

ϕ(n)
= +∞,

the maximal operator

sup
n∈N

|σnf |
ϕ(n)

is not bounded from the Hardy space H1/2 to the space L1/2. Tephnadze [11] generalized

this result and proved the boundedness of

sup
n∈N

|σnf |
(n+ 1)1/p−2

is bounded from the martingale Hardy space Hp to the space Lp, where σnf is n-th Fejér

mean with respect to bounded Vilenkin system for 0 < p < 1/2.

In this paper the two-dimensional case will be investigated with respect to Vilenkin-

like system. We show that the boundedness of some maximal operators. Throughout this

paper, we denote the set of integers and the set of non-negative integers by Z and N,

respectively. We use c, cp, Cp to denote constants and may denote different constants at

different occurrences.

2 Definitions and Notations

Let m := (m0,m1, · · · ,mk, · · · ) be sequence of natural numbers such that mk ≥ 2(k ∈
N). For all k ∈ N we denote by Zmk

the mk-th discrete cyclic group. Let Zmk
be represented

by {0, 1, · · · ,mk − 1}. Suppose that each (coordinate) set has the discrete topology and the

measure µk which maps every singleton of Zmk
to 1/mk (uk(Zmk

) = 1) for k ∈ N. Let Gm

denote the complete direct product of Zmk
’s equipped with product topology and product

measure µ, then Gm forms a compact Abelian group with Haar measure 1. The elements of

Gm are sequences of the form (x0, x1, · · · , xk, · · · ), where xk ∈ Zmk
for every k ∈ N and the

topology of the group Gm is completely determined by the sets

In(0) := {(x0, x1, · · · , xk, · · · ) ∈ Gm : xk = 0 (k = 0, · · · , n− 1)}

(I0(0) := Gm). The Vilenkin space Gm is said to be bounded if the generating system m is

bounded. We assume q = supi{mi} <∞.

Let M0 := 1 and Mk+1 := mkMk for k ∈ N, it is so-called the generalized powers.

Then every n ∈ N can be uniquely expressed as n =
∞
∑

k=0

nkMk, 0 ≤ nk < mk, nk ∈ N.

The sequence (n0, n1, · · · ) is called the expansion of n with respect to m. We often use

the following notations: |n| := max{k ∈ N : nk 6= 0} (that is, M|n| ≤ n < M|n|+1) and

n(k) =
∞
∑

j=k

njMj.
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For k ∈ N and x ∈ Gm denote rk the k-th generalized Rademacher function:

rk(x) := exp(2πι
xk

mk

) (x ∈ Gm, ι :=
√
−1, k ∈ N).

It is known that for x ∈ Gm, n ∈ N

mn−1
∑

i=0

ri
n(x) =

{

0 if xn 6= 0,

mn if xn = 0.
(2.1)

Now we define the ψn by

ψn :=

∞
∏

k=0

rnk

k (n ∈ N).

Then {ψn : n ∈ N} is a complete orthonormal system with respect to µ.

We introduce the so-called Vilenkin-like (or ψα) system (see [12]). Let functions αn, α
k
j :

Gm → C(n, j, k ∈ N) satisfy for all x, y ∈ Gm:

(1) αk
j is measurable with respect to Σj and αk

j (x+ y) = αk
j (x)α

k
j (y);

(2) |αk
j | = αk

j (0) = αk
0 = α0

j = 1 (j, k ∈ N);

(3) αn :=

∞
∏

j=0

αn(j)

j (n ∈ N).

Let χn := ψnαn (n ∈ N). The system χ := {χn : n ∈ N} is called a Vilenkin-like (or

ψα) system.

Define Dirichlet kernels and Fejér kernels with respect to Vilenkin-like system and

Vilenkin system as follows.

Dn(y, x) =

n−1
∑

k=0

χk(y)χk(x), Dn(x) =

n−1
∑

k=0

ψk(x),

Kn(y, x) =
1

n

n−1
∑

k=0

Dk(y, x), Kn(x) =
1

n

n−1
∑

k=0

Dk(x).

It’s well known that

DMn
(y, x) = DMn

(y − x) =

{

Mn if y − x ∈ In,

0 if y − x ∈ Gm\In.
(2.2)

Moreover for y, x ∈ Gm,

Dn(y, x) = αn(y)ᾱn(x)Dn(y − x) = χn(y)χ̄n(x)(

∞
∑

j=0

DMj
(y − x)

mj−1
∑

k=mj−nj

rk
j (y − x)). (2.3)

Since αk
j (x+ y) = αk

j (x)αk
j (y) and rj(x+ y) = rj(x)rj(y), we have

χn(y)χ̄n(x) = χn(y − x+ x)χ̄n(x) = χn(y − x)χn(x)χ̄n(x)

= χn(y − x)|χn(x)|2 = χn(y − x)χ̄n(0). (2.4)
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Thus we obtain

Dn(y, x) = Dn(y − x, 0) and Kn(y, x) = Kn(y − x, 0). (2.5)

Now we define χn,m(x, y) := χn(x)χm(y), (x, y ∈ Gm). If f ∈ L1 then the number

f̂(n,m) := E(fχn,m) is said to be the (n,m)-th coefficient of f with respect to system χ.

Denote by Sn,mf the (n,m)-th partial sum of the Fourier series of a martingale f with

respect to character system χ, namely,

Sn,mf :=

n−1
∑

k=0

m−1
∑

l=0

f̂(k, l)χk,l.

It is easy to see that

SMn,Mm
f = fn,m.

Let Fn,m(n,m ∈ N) be the σ-algebra generated by the rectangles In,m(x, y) := In(x)×
Im(y),(x, y ∈ Gm). A sequence of integrable functions f = (fn,m;n,m ∈ N) is said to be

a martingale if fn,m is Fn,m measurable for all n,m ∈ N and SMn,Mm
fk,l = fn,m for all

n,m, k, l ∈ N such that n 6 k and m 6 l.

We say that a martingale f = (fn,m;n,m ∈ N) is Lp-bounded if ‖f‖p := supn,m ‖
fn,m‖p <∞. The set of the Lp-bounded martingales will be denoted by Lp(G2

m).

The diagonal maximal function of a martingale f = (fn,m;n,m ∈ N) is defined by

f∗ := sup
n∈N

|fn,n|.

It is easy to see that in case when f is an integrable real valued function given on G2
m,

the above maximal functions can be computed for all x, y ∈ Gm by

f∗(x, y) = sup
n∈N

1

|In,n(x, y)| |
∫

In,n(x,y)

f |.

Define the spaces Hp(G2
m) of Hardy type as the set of martingales f such that

‖f‖Hp(G2
m) := ‖f∗‖p <∞.

The martingale Hardy spaces Hp(G2
m)(0 < p 6 1) have atomic characterizations. A

bounded measurable function a defined on G2
m is a p-atom if a ≡ 1 or there exists a dyadic

square I such that

supp a ⊂ I, ‖a‖∞ 6 |I|−1/p,

∫ ∫

a ≡ 0.

We shall say also that a is supported on I. Then a martingale f = (fn,m;n,m ∈ N) is in

Hp(G2
m) if there exists a sequence (ak, k ∈ N) of p-atoms and a sequence (λk, k ∈ N) of real

numbers such that
∞
∑

k=0

|λk|p <∞ and

∞
∑

k=0

λkSMn,Mn
ak = fn,n (n ∈ N). (2.6)
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Moreover, cp inf(
∞
∑

k=0

|λk|p)1/p 6 ‖f‖Hp 6 Cp inf(
∞
∑

k=0

|λk|p)1/p, where the infimum is taken

over all decompositions of f of the form (2.6).

Next we will consider the boudedness of operator σ̃∗f and σ̂∗f in the two-dimensional

Vilenkin-like system, where σ̃∗f = sup
2−α6 n

m 62α

|σn,mf |
[(n+1)(m+1)]1/p−2 , σ̂∗f = sup

n,m∈N

|σn,mf |
[(n+1)(m+1)]1/2p−1 .

3 Some Lemmas

Lemma 3.1 ([13]) Suppose that the operator T is sublinear and for 0 < p ≤ 1, there

exists a constant Cp > 0 such that

∫

Gm\I

|Ta|p 6 Cp, (3.1)

for every p-atom a ∈ Hp supported on the dyadic interval I. If T is bounded from Ls into

Ls for some 1 6 s 6 ∞, then

‖Tf‖p ≤ Cp‖f‖Hp (f ∈ Hp ∩ L1).

If (3.1) is true, T is called p-quasi-local.

Lemma 3.2 ([13]) Let 0 < p < 1, 1 < s ≤ ∞ and assume that the sublinear operator

T is p-quasi-local and (Ls, Ls)-bounded. Then T : Hu,v → Lu,v is bounded for all p < u < s

and 0 < v 6 ∞. Especially, T is of weak type (1,1).

Further we assume that for all n ∈ N the kernel Pn ∈ L∞ is given such that sup
n

‖Pn‖1 <

∞. If we consider the maximal operator

Tf := sup
n

|f ∗ Pn| (f ∈ L1),

then T : L∞ → L∞ is evidently bounded. Therefore, if T is p-quasi-local for some 0 < p < 1,

then Lemma 3.2 can be applied to T .

Lemma 3.3 If Pn is a summation kernel, i.e. with suitable real coefficients λn,k(n, k ∈
N)

Pn(x, 0) =

n
∑

k=0

λn,kχk(x, 0) (n ∈ N),

then the assumption

∫

Gm\IN

( sup
n>MN

∫

IN

|Pn(x− t, 0)|dt)pdx 6 Cp
1

MN

(n ∈ N) (3.2)

implies the p-quasi-locality of T .

Proof Indeed, to prove (3.1) let a be a p-atom supported on the interval I. Without

loss of generality we can assume that I = IN for some N ∈ N. Then a ∗Pn = 0 holds for all
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n = 0, . . . ,MN − 1, since the functions χk(k = 0, . . . ,MN − 1) are constant on I. Therefore,

Ta = sup
n>MN

|a ∗ Pn| and thus

∫

Gm\IN

(Ta(x))pdx =

∫

Gm\IN

( sup
n>MN

|
∫

IN

a(t)Pn(x− t, 0)dt|)pdx

6 ‖a‖p
∞

∫

Gm\IN

( sup
n>MN

∫

IN

|Pn(x− t, 0)|dt)pdx

6 MN

∫

Gm\IN

( sup
n>MN

∫

IN

|Pn(x− t, 0)|dt)pdx. (3.3)

Hence, (3.1) follows from (3.2) and (3.3).

Lemma 3.4 ([14]) Let z ∈ Ik,l
N , k = 0, · · · , N − 2, l = k + 1, · · · ,N − 1 and n > MN .

Then
∫

IN

|Kn(z − t, 0)|dµ(t) 6
cMlMk

nMN

. (3.4)

Let z ∈ Ik,N
N , k = 0, · · · , N − 1 and n ≥MN . Then

∫

IN

|Kn(z − t, 0)|dµ(t) 6
cMk

MN

, (3.5)

where c is an absolute constant and

Ik,l
N =

{

IN(0, · · · , 0, xk 6= 0, 0 · · · , 0, xl 6= 0, xl+1, · · · xN−1, · · · ) if k < l < N,

IN(0, · · · , 0, xk 6= 0, xk+1 = 0, · · · , xN−1 = 0, xN · · · ) if l = N.

.

Lemma 3.5 ([14]) Let 2 < A ∈ N+, k ≤ s < A , n∗
A := M2A +M2A−2 + · · ·+M2 +M0.

Then we have

n∗
A−1|Kn∗

A−1
(z, 0)| ≥ M2kM2s

4
,

for z ∈ I2k,2s
2A , k = 0, 1, · · · , A− 3, s = k + 2, k + 3, · · · , A− 1.

If I := I × J is a dyadic square and let Ir := Ir × Jr. Then it is not hard to see that

the definition of the p-quasi-locality of T can be modified as follows: there exists r = 0, 1 . . .

such that
∫

G2
m\Ir

|Ta|p 6 Cp (3.6)

holds for every p-atom a supported on the dyadic square I.

Let Pn,m(n,m ∈ N) be the Kronecker product of Pn and Pm, i.e. Pn,m(x1, 0, x2, 0) :=

Pn(x1, 0)Pm(x2, 0) and for a fixed α > 0 define Tα by

Tαf := sup
2−α6 n

m 62α

|f ∗ Pn,m|.

4 Formulations of Main Results
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Theorem 4.1 Assume (3.2) for a given 0 < p 6 1. Then Tα is p-quasi-local.

Proof It is enough to prove (3.6) with a suitable r ∈ N. To this end let a ∈ L∞(G2
m)

be a p-atom. We can assume that a is supported on the dyadic square IN × IN for some

N ∈ N. Furthermore, it follows that a ∗ Pn,m = 0 when n,m < MN . Therefore, to compute

Tαa = sup
2−α6 n

m 62α

|a ∗ Pn,m| it can be assumed n > MN or m > MN . In the first case

m > MN−r, while in the second case n > MN−r follows. In other words, we get the estimate

Tαa 6 sup
n,m>MN−r

|a ∗ Pn,m|,

where r ∈ N is determined by r − 1 6 α < r. Here, ‖a‖∞ 6 M
2
p

N implies

Tαa(x, y) 6 sup
n,m>MN−r

|
∫

IN

∫

IN

a(u, v)Pn(u− x, 0)Pm(v − y, 0)dudv|

6 M
2
p

N sup
n,m>MN−r

∫

IN

|Pn(u− x, 0)|du
∫

IN

|Pm(v − y, 0)|dv. (4.1)

Therefore, to verity (3.6) it is enough to show that
∫

G2
m\(IN−r×IN−r)

( sup
n,m>MN−r

∫

IN

|Pn(u− x, 0)|du
∫

IN

|Pm(v − y, 0)|dv)pdxdy 6
Cp

M 2
N

. (4.2)

To this end let us decompose the double integral in question as follows:
∫

G2
m\(IN−r×IN−r)

( sup
n,m>MN−r

∫

IN

|Pn(u− x, 0)|du
∫

IN

|Pm(v − y, 0)|dv)pdxdy

=

∫

Gm\IN−r

∫

IN−r

( sup
n,m>MN−r

∫

IN

|Pn(u− x, 0)|du
∫

IN

|Pm(v − y, 0)|dv)pdxdy

+

∫

IN−r

∫

Gm\IN−r

( sup
n,m>MN−r

∫

IN

|Pn(u− x, 0)|du
∫

IN

|Pm(v − y, 0)|dv)pdxdy

+

∫

Gm\IN−r

∫

Gm\IN−r

( sup
n,m>MN−r

∫

IN

|Pn(u− x, 0)|du
∫

IN

|Pm(v − y, 0)|dv)pdxdy

=: A1 + A2 +A3. (4.3)

Here A1 can be estimated in the following way:

A1 6

∫

Gm\IN−r

( sup
n>MN−r

∫

IN

|Pn(u− x, 0)|du)pdx

∫

IN

(sup
m

∫

G

|Pm(v − y, 0)|dv)pdy

6

∫

Gm\IN−r

( sup
n>MN−r

∫

IN

|Pn(u− x, 0)|du)pdx|IN |(sup
m

‖Pm‖1)
p

6 Cp
1

MN

∫

Gm\IN−r

( sup
n>MN−r

∫

IN−r

|Pn(u− x, 0)|du)pdx. (4.4)

Thus we get

A1 6 Cp
1

MN

1

MN−r

6
Cp

M 2
N

.
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The estimate A2 6
Cp

M2
N

can be derived similarly. Finally, applying (3.2) twice the

estimation

A3 6 (

∫

Gm\IN−r

( sup
k>MN−r

∫

IN

|Pn(u− x, 0)|du)pdx)2 6 Cp

1

M 2
N

(4.5)

follows, which proves Theorem 4.1.

Theorem 4.2 Let σ̃∗f = sup
2−α6 n

m 62α

|σn,mf |
[(n+1)(m+1)]1/p−2 . Then for all 0 < p < 1/2 we have

‖σ̃∗f‖p 6 Cp‖f‖p (f ∈ Lp(G2
m)).

Proof Let Pn(x, 0) =
n
∑

k=0

1
(n+1)1/p−2Kn(x, 0). By Theorem 4.1, it is enough to prove

(3.2) for Pn(x, 0). Let z ∈ Ik,l
N , 0 6 k < l 6 N . From Lemma 3.4 and 1/p− 2 > 0 we get

sup
n>MN

1

(n+ 1)1/p−2

∫

I

|Kn(z − t, 0)|dt ≤ c
1

M
1/p−2
N

MlMk

nMN

≤ c
MlMk

M
1/p
N

. (4.6)

Thus we obtain
∫

Gm\IN

( sup
n>MN

∫

IN

|Pn(x− t, 0)|dt)pdx

=

∫

Gm\IN

( sup
n>MN

1

(n+ 1)1/p−2

∫

IN

|Kn(x− t, 0)|dt)pdx

=

N−2
∑

k=0

N−1
∑

l=k+1

mj−1
∑

xj=0,j∈{l+1,··· ,N−1}

∫

Ik,l
N

( sup
n>MN

1

(n+ 1)1/p−2

∫

IN

|Kn(x− t, 0)|dt)pdµ(z)

+

N−1
∑

k=0

∫

Ik,N
N

( sup
n>MN

1

(n+ 1)1/p−2

∫

IN

|Kn(x− t, 0)|dt)pdµ(z)

≤ c

N−2
∑

k=0

N−1
∑

l=k+1

ml · · ·mN − 1

MN

(
MlMk

M
1/p
N

)p +

N−1
∑

k=0

1

MN

(
MNMk

M
1/p
n

)p

≤ c

N−2
∑

k=0

N−1
∑

l=k+1

(MlMk)
p

MlMN

+

N−1
∑

k=0

1

M 2
N

(MNMk)
p

= c
1

MN

(

N−2
∑

k=0

N−1
∑

l=k+1

1

M 1−2p
l

(MlMk)
p

M 2p
l

+

N−1
∑

k=0

1

M 1−2p
N

(MNMk)
p

M 2p
N

)

= c
1

MN

(

N−2
∑

k=0

N−1
∑

l=k+1

1

2(1−2p)l
+

N−1
∑

k=0

1

2N(1−2p)
)

= c
1

MN

(

N−2
∑

k=0

1

2(1−2p)k
+

N

2N(1−2p)
)

≤ c

MN

, (4.7)

which complete the proof of Theorem 4.2.
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By Lemma 3.2 and Theorem 4.2, we easily get Theorem 4.3, we omit the proof.

Theorem 4.3 Let 0 < p < 1/2. Then σ̃∗ : Hu,v(G2
m) → Lu,v(G2

m) is bounded for all

p < u <∞ and 0 < v 6 ∞. Especially, σ̃∗ is of weak type (1,1).

Theorem 4.4 Let 0 < p < 1/2. Then the two dimensional maximal operator σ̂∗

defined by σ̂∗f = sup
n,m∈N

|σn,mf |
[(n+1)(m+1)]1/2p−1 is not bounded from Hp(G2

m) to Lp(G2
m).

Proof Let A ∈ N and

fA(x, y) := (DM2A+1
(x, 0) −DM2A

(x, 0))(DM2A+1
(y, 0) −DM2A

(y, 0)).

It is simple to calculate

f̂A(i, j) =

{

1, if i, j = M2A,M2A + 1, · · · ,M2A+1 − 1

0, otherwise
(4.8)

and

Sk,l(fA; x, y)) =



















(Dk(x, 0) −DM2A
(x, 0))(Dl(y, 0) −DM2A

(y, 0)),

if k, l = M2A,M2A + 1, · · · ,M2A+1 − 1

fA(x, y), if k, l ≥M2A+1

0, otherwise.

(4.9)

We have

f∗
A = sup

k

|SMk,Mk
(fA; x, y)| = |fA(x, y)|,

‖fA‖Hp = ‖f∗
A‖p = ‖fA‖p

=

(
∫

Gm

(

DM2A+1
(x, 0) −DM2A

(x, 0)
)p
dx

∫

Gm

(

DM2A+1
(y, 0) −DM2A

(y, 0)
)p
dy

)1/p

=

(
∫

Gm

(

DM2A+1
(x) −DM2A

(x)
)p
dx

)2/p

=

(
∫

I2A+1

(

DMA+1
(x) −DM2A

(x)
)p
dx+

∫

I2A\I2A+1

(

DM2A+1
(x) −DM2A

(x)
)p
dx

)2/p

≤ [
m2A−1

M2A+1

Mp
2A +

(m2A − 1)pMp
2A

M2A+1

]2/p

≤ cM
2(1−1/p)
2A .

Since

Di+MA
(x, 0) −DMA

(x, 0) = χMA
(x)Dk(x, 0) (4.10)



No. 5 Two-dimensional maximal operator of vilenkin-like system on Hardy spaces 407

we have

σ̂∗f = sup
n,m∈N

|σn,mf |
[(n+ 1)(m+ 1)]1/2p−1

≥ |fA ∗
Kn∗

A,n∗

A

(n∗
A + 1)(1/p−2)

|

=
1

(n∗
A)2(n∗

A + 1)(1/p−2)
|

n∗

A−1
∑

i=0

n∗

A−1
∑

j=0

Si,jfA|

=
1

(n∗
A)2(n∗

A + 1)(1/p−2)
|

n∗

A−1
∑

i=M2A+1

n∗

A−1
∑

j=M2A+1

Si,jfA|

=
1

(n∗
A)2(n∗

A + 1)(1/p−2)
|

M2A+1−1
∑

i=M2A+1

M2A+1−1
∑

j=M2A+1

(Di(x, 0) −DMA
(x, 0))(Dj(y, 0) −DMA

(y, 0))|

=
1

(n∗
A)2(n∗

A + 1)(1/p−2)
|

n∗

A−1−1
∑

i=1

n∗

A−1−1
∑

j=1

(Di+MA
(x, 0) −DMA

(x, 0))(Dj+MA
(y, 0) −DMA

(y, 0))|

=
(n∗

A−1)
2

(n∗
A)2(n∗

A + 1)(1/p−2)
|Kn∗

A−1
(x, 0)Kn∗

A−1
(y, 0)|. (4.11)

Let q = supi{mi}. For every l = 1, · · · , [ 1
4
logq(

√
A1/2p)] − 1 ( A is supposed to be

large enough) let kl be the smallest natural numbers, for which M2A

√
A1/2p 1

q2l/p ≤ M 2
2kl

<

M2A

√
A1/2p 1

q(2l−2)/p holds.

Suppose x, y ∈ Ikl,kl+1
2A := I2A(0, · · · , 0, z2kl

6= 0, z2kl+1 6= 0, z2s+1, · · · , z2A−1), then by

Lemma 3.5 we have

σ̂∗f ≥ (n∗
A−1)

2

(n∗
A)2(n∗

A + 1)(1/p−2)
|Kn∗

A−1
(x, 0)Kn∗

A−1
(y, 0)|

≥ (M2kl
M2kl+1)

2

(n∗
A)2(n∗

A + 1)(1/p−2)
≥ c

(M2kl
M2kl+1)

2

(M2A)2(M2A)(1/p−2)
≥ 1

(M2A)(1/p−2)

A1/2p

q4l/p
.

Thus

‖σ̂∗f‖p
p ≥ (

1

(M2A)(1−2p)

√
A

q4l
)(

[ 14 logq(
√

A1/2p)]−1
∑

l=1

m2kl+3−1
∑

x2kl+3=0

· · ·
m2A−1−1

∑

x2A−1=0

|Ikl,kl+1
2A |)2

≥ (
1

(M2A)(1−2p)

√
A

q4l
)(

[ 14 logq(
√

A1/2p)]−1
∑

l=1

m2kl+3 · · ·m2A−1

M2A

)2

≥ 1

(M2A)(1−2p)

A

q4l
(

[ 14 logq(
√

A1/2p)]−1
∑

l=1

1

M2kl

)2

≥ 1

(M2A)(1−2p)
(
logq A√
M2A

)2 =
1

M 2−2p
2A

(logq A)2. (4.12)

Then

‖σ̂∗f‖p
p

‖fA‖p
Hp

≥
1

M2−2p
2A

(logq A)2

cM 2p−2
2A

= (logq A)2 → ∞. (4.13)
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Thus the proof of Theorem 4.4 is complete.
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