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Abstract: This paper considers numerical methods for solving M-matrix Sylvester equations,

which are widely encountered in many fields of scientific computing and engineering applications.

Based on the properties of M-matrix and the idea of Smith method, a class of Smith-like iteration

method is proposed to solve M-matrix Sylvester equations, and convergence analysis of the new

method is given. Numerical experiments show that the proposed method is feasible and is effective

under certain conditions.
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1 Introduction

Sylvester equations play an important role in many fields of scientific computing and
engineering applications, such as control theory, linear system theory, numerical solution of
differential equations, optimization theory, signal processing, statistics and so on (see [1-4]).
In this paper, we consider Sylvester equation of the form

AX + XB = C, (1.1)

where A ∈ Rm×m, B ∈ Rn×n are M-matrices with at least one of them be nonsingular,
and C ∈ Rm×n is a nonnegative matrix. This kind of Sylvester equation is called M-matrix
Sylvester equation (see [5]). Under the above conditions, equation (1.1) has a unique nonneg-
ative matrix solution. M-matrix Sylvester equation appears frequently in iterative methods
for the study of nonsymmetric algebraic Riccati equations, while M-matrix Lyapunov equa-
tion, i.e., B = AT , arises in positive systems (see [6]).

The following are some definitions and lemmas, which are mainly from [7].
Let A = (aij) ∈ Rm×n, then A is called a nonnegative matrix if aij ≥ 0 for all i, j. For

A = (aij), B = (bij) ∈ Rm×n, we write A ≥ B(A > B), if aij ≥ bij(aij > bij) for all i, j. A
square matrix A = (aij) ∈ Rn×n is called a Z-matrix, if aij ≤ 0 for all i 6= j. Any Z-matrix A
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can be written as A = sI−B, where s is a scalar and B is a nonnegative matrix. In addition,
A is called an M-matrix if s ≥ ρ(B), where ρ(B) is the spectral radius of B. In particular,
A is called a nonsingular M-matrix if s > ρ(B) and singular M-matrix if s = ρ(B).

Lemma 1.1 Let A ∈ Rn×n be a Z-matrix. Then the following three statements are
equivalent:

(1) A is a nonsingular M-matrix;
(2) A−1 ≥ 0;
(3) Av > 0 for some vectors v > 0.
Lemma 1.2 Let A and B be Z-matrices. If A is a nonsingular M-matrix and A ≤ B,

then B is also a nonsingular M-matrix. In particular, for any α ≥ 0, B = αI + A is a
nonsingular M-matrix.

The rest of the paper is organized as follows. In Section 2, we review some iteration
methods for solving M-matrix Sylvester equations. In Section 3, we propose a class of Smith-
like iteration method and give convergence analysis of it. In Section 4, we use some numerical
examples to show the feasibility and effectiveness of the new method. Conclusion is given in
Section 5.

2 Some Existing Methods

Due to the wide applications of Sylvester equations, many efficient numerical methods
have been proposed for solving them. The basic method is Bartels-Stewart algorithm, which
is very effective for small-scale problems (see [8]). However, when the problem scale is large,
iterative methods are more effective than direct methods. The common iterative methods
for solving Sylvester equation include Smith method [9], alternating direction method [10],
Krylov subspace method [11], and etc. For some recent development, see [12-17] for details.

Smith method is a classical iterative method for solving Sylvester equations, which is
quadratically convergent. For M-matrix Sylvester equation, it is constructed as follows (see
[9,18] for details). For a fixed scalar µ > 0, equation (1.1) can be written as

(µI + A)X(µI + B)− (µI −A)X(µI −B) = 2µC,

thus we have X = X0 + E0XF0, where

X0 = 2µ(µI + A)−1C(µI + B)−1,

E0 = (µI + A)−1(µI −A), F0 = (µI −B)(µI + B)−1.

The solution of (1.1) admits the following series expansion X =
∞∑

i=0

Ei
0X0F

i
0 which can be

quickly approximated by Xk+1 = Xk + E2k

0 XkF
2k

0 , k ≥ 0.

Algorithm 1: Smith method
(1) Choose µ = max{aii, bii};
(2) Compute

X0 = 2µ(µI + A)−1C(µI + B)−1,



No. 5 A class of Smith-like iteration method for M-matrix Sylvester equations 391

E0 = (µI + A)−1(µI −A), F0 = (µI −B)(µI + B)−1;

(3) For k = 0, 1, · · · until convergence, compute

Xk+1 = Xk + EkXkFk, Ek+1 = E2
k, Fk+1 = F 2

k .

Recently, Wang et al proposed an alternating directional Smith method in [18], which
is differ to Smith method only in the initial settings. It is constructed as follows (see [18] for
details). Choose α, β > 0, and write equation (1.1) as (βI +A)X(αI +B)− (αI−A)X(βI−
B) = (α + β)C, thus we have X = X0 + E0XF0, where

X0 = (α + β)(βI + A)−1C(αI + B)−1,

E0 = (βI + A)−1(αI −A), F0 = (βI −B)(αI + B)−1.

The solution of (1.1) admits the following series expansion

X =
∞∑

i=0

Ei
0X0F

i
0

which can be quickly approximated by

Xk+1 = Xk + E2k

0 XkF
2k

0 , k ≥ 0.

The rest of the method is similar to Smith method.
Algorithm 2: Alternating directional Smith method
(1) Choose α = max{aii}, β = max{bii};
(2) Compute

X0 = (α + β)(βI + A)−1C(αI + B)−1,

E0 = (βI + A)−1(αI −A), F0 = (βI −B)(αI + B)−1;

(3) For k = 0, 1, · · · until convergence, compute

Xk+1 = Xk + EkXkFk, Ek+1 = E2
k, Fk+1 = F 2

k .

Compared with Smith method, the alternating directional Smith method has smaller
convergence factor, so it usually converges faster. However, the alternating directional Smith
method still has room for improvement. In this paper, we will propose a class of Smith-
like method to solve M-matrix Sylvester equations. Compared with Smith method and
alternating directional Smith method, the new method has less initial computation counts
and thus has better numerical behaviours under certain conditions.

3 A Class of Smith-like Iteration Method

In this section, based on the properties of M-matrix and the idea of Smith method, we
propose a class of Smith-like iteration method to solve M-matrix Sylvester equations, and
give convergence analysis of the new method.
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Choose parameter α > 0, and write equation (1.1) as X(αI + B) = (αI − A)X + C,

then we have X = X0 + E0XF0, where

X0 = C(αI + B)−1, E0 = αI −A, F0 = (αI + B)−1. (3.1)

The solution can be written as

X =
∞∑

i=0

Ei
0X0F

i
0.

As in the Smith method, we can approximate the solution by the following iteration:
{

Xk+1 = Xk + EkXkFk,

Ek+1 = E2
k, Fk+1 = F 2

k ,
, k = 0, 1, 2, · · · (3.2)

Compared with Smith method and alternating directional Smith method, the above
method only needs to calculate the inverse of one matrix in the initial condition (3.1), so
the amount of computation is small. In the bellow, we give the convergence analysis of the
method (3.1)-(3.2).

Lemma 3.1 For equation (1.1), if the parameter α satisfies α ≥ {aii}, then X0, E0, F0

defined in (3.1) are all nonnegative.
Proof Since A is an M-matrix, and α ≥ {aii}, we know that E0 = αI − A ≥ 0. On

the other hand, since B is an M-matrix, and α > 0, we can conclude from Lemma 1.2 that
αI + B is a nonsingular M-matrix. Thus from Lemma 1.1, we have F0 = (αI + B)−1 ≥ 0.
Similarly, we have X0 = C(αI + B)−1 ≥ 0.

Theorem 3.1 For equation (1.1), if the parameter α satisfies α ≥ {aii}, then the
sequence {Xk} generated by (3.2) is nonnegative, monotonically increasing and converges to
X. In addition, the convergent rate is quadratic, and the convergent factor is given by

lim sup
k→∞

2k
√
‖X −Xk‖ ≤ α− λmin(A)

α + λmin(B)
,

where λmin(A), λmin(B) are the minimum nonnegative eigenvalues of A,B respectively.
Proof From Lemma 3.1 and the iteration (3.2), it is easy to verify that the sequence

{Xk} is nonnegative, monotonically increasing. In addition, we can conclude that

Xk =
2k−1∑
i=0

Ei
0X0F

i
0.

Thus we have

X −Xk =
∞∑

i=2k

Ei
0X0F

i
0 = E2k

0

( ∞∑
i=0

Ei
0X0F

i
0

)
F 2k

0 = E2k

0 XF 2k

0 .

Taking norm on both sides and noting that lim
k→∞

k
√
‖Ak‖ = ρ(A), we have

lim sup
k→∞

2k
√
‖X −Xk‖ ≤ ρ(E0) · ρ(F0).
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Since E0, F0 are nonnegative, it is easy to conclude that

ρ(E0) = α− λmin(A), ρ(F0) =
1

α + λmin(B)
.

In addition, since A and B are M-matrices with at least one of them be nonsingular, we
have α−λmin(A)

α+λmin(B)
< 1. Thus the convergent rate of (3.2) is quadratic.

Corollary 3.1 Let the assumptions be as in Theorem 3.1, then the optimal parameter
in (3.1)-(3.2) is α = {aii}.

Proof Since the convergent factor is given by α−λmin(A)
α+λmin(B)

, it is clear that the smaller the
parameter be, and the smaller the convergence factor will be. Thus the optimal parameter
is α = {aii}.

Similarly, if we choose parameter β > 0, equation (1.1) can be written as

(βI + A)X = X(βI −B) + C,

and we can have
X = X0 + E0XF0,

where
X0 = (βI + A)−1C, E0 = (βI + A)−1, F0 = βI −B. (3.3)

The solution can be written as

X =
∞∑

i=0

Ei
0X0F

i
0.

And similarly, we can reach to the following iteration:
{

Xk+1 = Xk + EkXkFk,

Ek+1 = E2
k, Fk+1 = F 2

k ,
, k = 0, 1, 2, · · · (3.4)

We have similar convergence results for the above iterative method (3.3)-(3.4).
Theorem 3.2 For equation (1.1), if the parameter β satisfies β ≥ {bii}, then the

sequence {Xk} generated by (3.4) is nonnegative, monotonically increasing and converges to
X. In addition, the convergent rate is quadratic, and the convergent factor is

lim sup
k→∞

2k
√
‖X −Xk‖ ≤ β − λmin(B)

β + λmin(A)
,

where λmin(A), λmin(B) are the minimum nonnegative eigenvalues of A,B respectively.
Corollary 3.2 Let the assumptions be as in Theorem 3.2, then the optimal parameter

in (3.3)-(3.4) is β = {bii}.
From the convergence analysis of the above iterative methods (3.2) and (3.4), it can be

seen that the convergence factors of the two iterative methods are generally different. In
order to achieve faster convergence in practical calculation, we consider both the numerical
effects of the two iterative methods and propose the following algorithm.
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Algorithm 3: Smith-like iteration method
(1) Compute α = max{aii}, β = max{bii}, where aii, bii are the diagonal entries of A,B

respectively;
(2) If α ≤ β, compute according to (3.1)-(3.2);
(3) If α > β, compute according to (3.3)-(3.4).

4 Numerical Experiments

In this section we use several examples to show the feasibility and effectiveness of the
Smith-like method. We will compare the numerical behaviours of the Smith method, the
alternating directional Smith method, and the Smith-like iteration method, denoted by Alg
1, Alg 2, Alg 3 respectively. The numerical results are presented in terms of the numbers of
iterations (IT), CPU time (CPU) in seconds and the residue (RES), where

RES :=
‖AX + XB − C‖∞

‖C‖∞ .

In our implementations all iterations are performed in MATLAB (version R2012a) on a
personal computer and are terminated when the current iterate satisfies RES < 10−12.

Example 4.1 Consider equation (1.1), where

A =

(
1 −1
−1 1

)
, B =




3 −1 −1
−1 3 −1
−1 −1 3


 , C =

(
1 1 1
1 1 1

)
.

Numerical results are reported in Table 1 for this example. From Table 1, we can conclude
that all the three methods can compute the solution as desired accuracy, and all have better
numerical behaviours. In addition, the number of iterations required by Algorithm 2 is
slightly smaller, and the CPU time of Algorithm 3 is slightly less.

Table 1 Numerical Results of Example 4.1

Method IT CPU RES
Alg 1 6 0.0005 4.4409e-16
Alg 2 5 0.0005 1.1102e-15
Alg 3 6 0.0004 8.8818e-16

Example 4.2 Consider equation (1.1), where

A =

(
102 −100
−100 102

)
, B =

(
3 −1
−1 3

)
, C =

(
1 1
1 1

)
.

Numerical results are reported in Table 2. For this problem, all the three methods can
compute the solution as desired accuracy, and the numerical behaviours of the latter two
methods are better. In particular, the CPU time of Algorithm 3 is slightly less than that of
Algorithm 2.
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Table 2 Numerical Results of Example 4.2

Method IT CPU RES
Alg 1 9 0.0006 3.8303e-15
Alg 2 5 0.0005 4.7740e-15
Alg 3 5 0.0004 4.6629e-15

Example 4.3 Consider equation (1.1) with

A =




2 −1
2 −1

. . . . . .

2 −1
−1 2



∈ Rn×n, B = ωA, C = I.

Here we take n = 100. For different values of parameter ω, the numerical results are shown
in Table 3. It can be seen from the table that the numerical effects of the three methods
are all well. In particular, when α = max{aii} and β = max{bii} differ greatly, Algorithm 3
requires the lest CPU time.

Table 3 Numerical Results of Example 4.3

ω Method IT CPU RES
Alg 1 4 3.7869 5.3966e-16

1 Alg 2 4 3.7408 5.3966e-16
Alg 3 5 3.4153 5.3966e-16
Alg 1 5 5.0133 3.2582e-16

10 Alg 2 4 4.6787 1.0607e-16
Alg 3 4 4.2557 1.0762e-16
Alg 1 5 5.8128 4.2082e-16

100 Alg 2 3 3.8218 2.3106e-17
Alg 3 3 3.4193 1.2174e-16

Example 4.4 Consider equation (1.1) with

A =




3 −1
−1 3 −1

. . . . . . . . .

−1 3 −1
−1 3




, B =




n + 1 −1 · · · −1 −1
−1 n + 1 · · · −1 −1
...

...
. . .

...
...

−1 −1 · · · n + 1 −1
−1 −1 · · · −1 n + 1




,

and C = I. For different values of n, the numerical results are shown in Table 4. It can be
seen that the numerical effects of the three methods are all well. In particular, Algorithm 3
requires the lest CPU time.
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Table 4 Numerical Results of Example 4.4

n Method IT CPU RES
Alg 1 8 0.0227 8.9882e-14

50 Alg 2 5 0.0195 3.3946e-14
Alg 3 5 0.0145 1.8756e-13
Alg 1 9 0.0395 1.1469e-13

100 Alg 2 5 0.0224 1.1316e-13
Alg 3 5 0.0219 2.2306e-13
Alg 1 10 0.1071 1.6718e-13

200 Alg 2 5 0.0749 2.4595e-13
Alg 3 5 0.0609 2.5491e-13
Alg 1 11 0.7105 5.3530e-13

400 Alg 2 5 0.3531 6.2832e-13
Alg 3 5 0.2374 6.7059e-13
Alg 1 12 1.9798 9.4068e-13

600 Alg 2 6 1.0114 9.1798e-13
Alg 3 6 0.7328 8.2318e-13

From the above four examples, it can be seen that Algorithm 3 is feasible. In particular,
when α = max{aii} and β = max{bii} differ greatly, Algorithm 3 requires the lest CPU time,
so it is also effective.

5 Conclusions

In this paper, the numerical solution of M-matrix Sylvester equations is studied, and a
class of Smith-like iteration method is proposed to solve the equation. Convergence analysis
and numerical examples show that the new method is feasible. In addition, it is effective
under certain conditions.
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M- 矩阵 Sylvester 方程的一类 Smith-like 迭代法

关晋瑞, 王志欣, 任孚鲛

(太原师范学院数学与统计学院, 山西 晋中 030619)

摘要: 本文研究了M- 矩阵 Sylvester 方程的数值解法, 这类矩阵方程广泛出现在科学计算和工程应

用的许多领域. 利用 M- 矩阵的性质和 Smith 方法的思想, 提出了一类 Smith-like 迭代法以求解 M- 矩阵

Sylvester 方程, 并给出了新方法的收敛性分析. 数值实验表明, 新方法是可行的, 而且在一定条件下也是较

为有效的.
关键词: Sylvester 方程; M- 矩阵; Smith 方法
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