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Abstract: In this paper, we prove moderate deviations for quadratic forms and empirical

periodograms of linear random fields. The main assumptions on the linear random fields are a

Logarithmic Sobolev Inequality for the driving random variables and some integrability conditions

for the spectral density. As statistical applications, we give the moderate deviation estimates of

the least square and the Yule-Walker estimators for unilateral autoregression stationary fields. The

results above are generalizations of the results for linear random processes in [8].
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1 Introduction

Consider a linear random field X = {Xj,k; (j, k) ∈ Z2} defined on a probability space
(Ω,F ,P) by

Xj,k :=
∑
r,s∈Z

ar,sξj+r,k+s, (1.1)

where {ar,s; (r, s) ∈ Z2} is a sequence of constants, the innovations {ξr,s; (r, s) ∈ Z2} are
independent and identically distributed (i.i.d.) centered square integrable random variables,
with common law L(ξ0,0) = µ, and the variance Var (ξ0,0) = 1. Assume that

∑

(r,s)∈Z2

a2
r,s < ∞. (1.2)

Under the condition (1.2), Xj,k in (1.1) is well defined, see Lemma A.1 in [1]. The family
{Xj,k; (j, k) ∈ Z2} is strictly stationary with the spectral density given by

f(t) :=

∣∣∣∣∣
∑

u∈Z2

aueiu·t
∣∣∣∣∣

2

, (1.3)

where u · t := u1t1 + u2t2 for any u = (u1, u2) ∈ Z2 and t = (t1, t2) ∈ I, I is the torus
identified with [−π, π)2 in the usual way.
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The empirical periodogram is one of the main tools in the estimation of the unknown
spectral density f . It is defined by

In(t) :=
1

(2π)2n2
|

∑
1≤u≤n

eiu·tXu|2, (1.4)

where t = (t1, t2) ∈ I, n = (n, n), 1 ≤ u ≤ n means that 1 ≤ u1 ≤ n, 1 ≤ u2 ≤ n for
u = (u1, u2) ∈ Z2.

The limit theorems of the empirical periodogram In usually involve the following quadratic
forms

Φn := (
1
n2

∑
1≤k≤n

XkXk+l)l∈Z2 .

There have been abundant literatures contributing to the study of limit theorems for In and
Φn, we refer the reader to Rosenblatt [2] and references therein.

The main purpose of this paper is to estalish the moderate deviation principle(MDP in
short) for the empirical periodogram In and quadratic forms Φn. In order to do these, we
put forward sone conditions such as Lq(I, dt)-integrability of the spectral density f and a
Logarithmic Sobolev Inequality (LSI in short) for the law µ of the driving random variable
ξ. Moreover, as statistical applications, we provide the moderate deviation estimates of the
least square and the Yule-Walker estimators for unilateral autoregression stationary fields.

This paper is organized as follows. In section 2, we establish the MDP for quadratic
form and the empirical periodogram, and give a statistical application based on our MDP
results. Some lemmas of dependent stationary fields and the proofs of the main results are
given in section 3.

2 Moderate Deviation Principles for the Linear Random Field

2.1 MDP for Quadratic Form

Assume the following conditions:

(H1) The law µ of the driving random variable ξ satisfies a LSI, i.e., there exists a constant
C > 0 such that

Entµ(h2) ≤ 2CEµ(|∇h|2) (2.1)

for every smooth h such that Eµ(h2 log+ h2) < ∞, where

Entµ(h2) = Eµ(h2 log h2)− Eµ(h2) logEµ(h2). (2.2)

(H2) The spectral density function f is in Lq(I, dt), where 2 < q ≤ +∞.

(H3) The sequence of positive numbers {bn}n∈N satisfies that bn → ∞ and bnn1/q−1/2 → 0
as n →∞. Here q is the constant appearing in (H2).
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Remark The LSI (2.1) implies that there exists some constant δ > 0 such that

Eµ

(
eδ|x|2

)
< ∞. (2.3)

See [3, Chapter 3] for more details on the LSI.
Let

κ4 =
E(ξ4

0)− 3[E(ξ2
0)]

2

E(ξ2
0)2

be the cumulant of order 4 of the random variable ξ0.
Theorem 2.1 Assume (H1)-(H3) hold. Then for every λ = (λk)0≤k≤m ∈ R(m+1)2 ,

lim
n→∞

1
b4
n

logE exp

(
b2
n

n

∑
0≤l≤m

λl

∑
1≤k≤n

(XkXk+l − EXkXk+l)

)
=

1
2

∑
0≤k,l≤m

λkΣ2
k,lλl, (2.4)

where Σ2
k,l,0 ≤ k, l ≤ m is given by

Σ2
k,l =

1
(2π)2

∫

I

2 cos(k · t) cos(l · t)f2(t)dt

+ κ4

(
1

(2π)2

∫

I

f(t) cos(k · t)dt

)(
1

(2π)2

∫

I

f(t) cos(l · t)dt

)
. (2.5)

In particular, (
1

nb2
n

∑
1≤k≤n

(XkXk+l − EXkXk+l)

)

0≤l≤m

satisfies the LDP on R(m+1)2 with speed b4
n and with the rate function given by

I(z) = sup
λ∈R(m+1)2

{ ∑
0≤k≤m

λkzk − 1
2

∑
0≤k,l≤m

λkΣ2
k,lλl

}
, z = (zk)0≤k≤m ∈ R(m+1)2 .

As a consequence of Theorem 2.1 , we have the following MDP by the contraction
principle ([4, Theorem 4.2.1]).

Corollary 2.2 Assume (H1)-(H3) hold. For all l ≥ 0, 1
nb2n

∑
1≤k≤n

(XkXk+l−EXkXk+l)

satisfies the LDP on R with speed b4
n and with the rate function given by

Il(z) =
1
2

z2

1/(2π)2
∫

I
2 cos2(l · t)f2(t)dt + k4

(
1/(2π)2

∫
I
f(t) cos(l · t)dt

)2

with the convention that a/0 = +∞ for all a > 0 and 0/0 := 0.

2.2 MDP for the Empirical Periodgram

From Theorem 2.1 and the projective limit method (see [4]), we obtain the functional
type’s MDP for

Ln(t) =
n

b2
n

(In(t)− EIn(t)) .
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Theorem 2.3 Assume (H1)-(H3) hold. Let 1 ≤ p < 2 and p′ ∈ [2,+∞] the conjugated
number, i.e., 1/p + 1/p′ = 1. Assume that

bnn1/q+1/p′−1/2 → 0,
1
p′

+
1
q

<
1
2
.

Then (Ln)n≥1 satisfies the LDP on (Lp(I, dt), σ(Lp(I, dt), Lp′(I, dt))) with speed b4
n and

with the rate function given by

J(η) =





1
(2π)2

∫

I

η2(t)
4f2(t)

dt− κ4

2 + κ4

(
1

(2π)2

∫

I

η(t)
2f(t)

dt

)2

,

if κ4 > −2, η is even, ηdt ¿ fdt and
η

f
∈ L2(I, dt);

+∞, otherwise,

(2.6)

where η is even means that η(t) = η(−t),∀t ∈ I.
As a consequence of Theorem 2.3 , we have the following MDP .
Corollary 2.4 Under the assumptions of Theorem 2.3 , we have that for all h ∈

Lp′(I, dt),

lim sup
n→∞

1
b4
n

logE
(
e

b4n
1

(2π)2

∫
I

h(t)Ln(t)dt
)

=
1
2
σ2(h),

where

σ2(h) :=
1

(2π)2

∫

I

2h̃2(t)f2(t)dt + κ4

(
1

(2π)2

∫

I

h(t)f(t)dt

)2

with h̃(t) = (h(t)+h(−t))/2. In particular, 1
(2π)2

∫
I
h(t)Ln(t)dt satisfies the LDP on R with

speed b4
n and with the rate function given by Ih(z) := z2

2σ2(h)
.

2.3 Unilateral Autoregression Stationary Field

Consider the unilateral autoregression process:

Xs,t = ρXs−1,t + εs,t, s, t ∈ N, (2.7)

where the sequence {εs,t}s,t∈Z is i.i.d. with common law µ, satisfying a LSI, and E(εs,t) =
0,E(ε2

s,t) = 1 and ρ ∈ (−1, 1) is the unknown parameter. Assume that the sequence
{X0,k}k∈N is i.i.d. with common law of

∑∞
k=0 ρkε−k,0, which is independent of {εs,t}s,t≥1.

{Xs,t}s,t∈N is thus a centered stationary field, which is a special one of the unilateral autore-
gression fields, see [5] and [6].

Let ρ̂n be the least square estimator of ρ given by

ρ̂n =

∑
1≤(i,j)≤n Xi,jXi−1,j∑
1≤(i,j)≤n X2

i−1,j−1

and let ρ̃n be the Yule-Walker estimator of ρ given by

ρ̃n =

∑
0≤(i,j)≤n Xi,jXi−1,j∑
0≤(i,j)≤n X2

i−1,j−1

.
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It is well-known that ρ̂n and ρ̃ are consistent and asymptotically normal, see [5] and [6].
Moreover, Bercu et al.[7] showed that the LDP of the Yule-Walker estimator is better than
the one of the least square estimator.

By using Theorem 2.1 and the same proof of Proposition 3.1 in [8], one can prove the
following MDP of the least square and the Yule-Walker estimator. These two estimators
share the same MDP. Here we omit the proof.

Proposition 2.5 Let (bn) be a sequence of positive numbers satisfying that bn → ∞
and bnn1/q−1/2 → 0 as n →∞. Then n

b2n
(ρ̂n− ρ) (or n

b2n
(ρ̃n− ρ)) satisfies the LDP on R with

speed b4
n and with the rate function given by

I(x) =
x2

2(1− ρ2)
.

3 Proofs of Main Theorems

The proof of Theorem 2.1 and Theorem 2.3 are similar to that in [8]. Here, we only
give the sketch of the proof for Theorem 2.1 . First, we give some lemmas.

3.1 Several Lemmas

In this part, we give several facts concerning the Toeplitz matrix, the Fejèr approxima-
tion and the MDP of m-dependent stationary fields.

For an n× n matrix A, denote the usual operator norm ‖A‖ = sup
x∈Rn

|Ax|
|x| . For any even

function h ∈ L1(I, dt), Tn(h) = (r̂k−l(h))1≤k,l≤n is the Toeplitz matrix associated with h,
where r̂k(h) is the kth Fourier coefficient of h given by

r̂k(h) =
1

(2π)2

∫

I

eik·th(t)dt, ∀k ∈ Z2. (3.1)

Lemma 3.1 [9, Lemma 1] If f ∈ Lq(I, dt), where 1 ≤ q ≤ ∞, then for all n ≥ 1, we
have

‖Tn(f)‖q ≤ n2/q‖f‖q.

Lemma 3.2 [9, Theorem 1] Let fk ∈ Lqk(I, dt) with qk ≥ 1 for k = 1, · · · , p and
p∑

k=1

(1/qk) ≤ 1. Then

lim
n→∞

1
n2

tr(
p∏

k=1

Tn(fk)) = r̂0(
p∏

k=1

fk).

Let m be a given positive integer, a random field (Zn)n∈Z2 is called m-dependent, if
for any finite sets A,B ⊂ Z2 with d(A,B) > m, the σ-algebras σ{Zk,l; (k, l) ∈ A} and
σ{Zk,l; (k, l) ∈ B} are independent. Here

d(A,B) = min
(kA,lA)∈A,

(kB,lB)∈B

{
max{|kA − kB|, |lA − lB|}

}
.
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See [10] for the study of the strong large number law for m-dependent random fields.
The following Lemma is the generalization of the MDP result for the m-dependent

stationary processes in [11].
Lemma 3.3 Let (Zn)n∈Z2 be a centered m-dependent stationary random field in RN ,

such that

E
(
eα|Z0|) < ∞, for some α > 0. (3.2)

Then for all λ ∈ RN ,

lim
n→∞

1
b4
n

logE(e
b2n
n

∑
1≤k≤n〈λ,Zk〉) =

1
2
(E〈λ,Z0〉2 +

∑

0<d(k,0)≤m

E〈λ,Z0〉〈λ,Zk〉). (3.3)

Proof The proof is inspired by the method in the proof of [11, Theorem 1.1]. Here, we
give the sketch of the proof. First, we prove this lemma in the case m = 1. Fix the integer
p > 1 and for each n ≥ 1, we write n = knp + rn, where kn and rn are non-negative integers
with 0 ≤ rn ≤ p− 1. Define

Yr,s =
∑

(r−1)p<j<rp,
(s−1)p<k<sp

Zj,k, r, s = 1, 2, · · · .

Then, {Yr,s}(r,s)∈N2 is an independent and identically distributed sequence. By the moderate
deviation principle for i.i.d. random variables (see [4, Theorem 3.7.1]), we have

lim
n→∞

1
b4
n

logE exp{b2
n

n

∑
1≤r≤kn,
1≤s≤kn

〈λ, Yr,s〉}

=
1

2p2
((p− 1)2E〈λ,Z0,0〉2 + (p− 2)2

∑
i,j=±1

E〈λ,Z0,0〉〈λ,Zi,j〉

+ (p− 1)(p− 2)
∑
i=±1

E〈λ,Z0,0〉〈λ,Zi,0 + Z0,i〉). (3.4)

Similarly,

lim
n→∞

1
b4
n

logE exp
{b2

n

n

kn∑
l=1

∑
1≤j,s≤pkn,with

j=pl or s=pl

〈λ,Zj,s〉
}

(3.5)

= lim
n→∞

1
2n2

(
k2

n(2p− 1)E〈λ,Z0,0〉2 +
(
2kn(kn − 1) + 1

) ∑
i=±1

E〈λ,Z0,0〉〈λ,Zi,i〉

+2kn(kn − 1)
∑
i=±1

E〈λ,Z0,0〉〈λ,Zi,−i〉+ kn(knp− 1)
∑
i=±1

E〈λ,Z0,0〉〈λ,Zi,0 + Z0,i〉
)

=
1

2p2

(
(2p− 1)E〈λ,Z0,0〉2 + 2

∑
i,j=±1

E〈λ,Z0,0〉〈λ,Zi,j〉+ p
∑
i=±1

E〈λ,Z0,0〉〈λ,Zi,0 + Z0,i〉
)
.
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By (H3) and (3.2), we have

lim
n→∞

1
b4
n

logE exp{b2
n

n

∑
1≤j,s≤n,with

j>pkn or s>pkn

〈λ,Zj,s〉} = 0. (3.6)

Let Sn =
∑

1≤k≤n

Zk, noticing that

Sn =
∑

1≤r≤kn,
1≤s≤kn

Yr,s +
kn∑
l=1

∑
1≤j,s≤pkn,with

j=pl or s=pl

Zj,s +
∑

1≤j,s≤n,with
j>pkn or s>pkn

Zj,s. (3.7)

Then for any a1, a2, a3 > 1 with 1/a1 + 1/a2 + 1/a3 = 1, by the Hölder inequality, we have

E exp
{b2

n

n
〈λ, Sn〉

} ≤{
E exp{a1

b2
n

n

∑
1≤r≤kn,
1≤s≤kn

〈λ, Yr,s〉}
}1/a1{E exp{a2

b2
n

n

kn∑
l=1

∑
1≤j,s≤pkn,with

j=pl or s=pl

〈λ,Zj,s〉}}1/a2

· {E exp{a3
b2
n

n

∑
1≤j,s≤n,with

j>pkn or s>pkn

〈λ,Zj,s〉}
}1/a3

. (3.8)

By (3.4)–(3.6), we know that

lim
n→∞

1
b4
n

logE exp
{

b2
n

n
〈λ, Sn〉

}
(3.9)

≤ a1

2p2

(
(p− 1)2E〈λ,Z0,0〉2 + (p− 2)2

∑
i,j=±1

E〈λ,Z0,0〉〈λ,Zi,j〉

+ (p− 1)(p− 2)
∑
i=±1

E〈λ,Z0,0〉〈λ,Zi,0 + Z0,i〉
)

+
a2

2p2

(
(2p− 1)E〈λ,Z0,0〉2 + 2

∑
i,j=±1

E〈λ,Z0,0〉〈λ,Zi,j〉+ p
∑
i=±1

E〈λ,Z0,0〉〈λ,Zi,0 + Z0,i〉
)
.

Firstly letting p →∞ and then letting a1 → 1 in (3.9) , we have

lim
n→∞

1
b4
n

logE exp
{

b2
n

n
〈λ, Sn〉

}
≤ 1

2
(
E〈λ,Z0〉2 +

∑

0<d(k,0)≤1

E〈λ,Z0〉〈λ,Zk〉
)
. (3.10)

Similarly, from (3.7),

E exp{ b2
n

a1n

∑
1≤r≤kn,
1≤s≤kn

〈λ, Yr,s〉} ≤{E exp{b2
n

n
〈λ, Sn〉}}1/a1{E exp{−a2

a1

b2
n

n

kn∑
l=1

∑
1≤j,s≤pkn,with

j=pl or s=pl

〈λ,Zj,s〉}}1/a2

· {E exp{−a3

a1

b2
n

n

∑
1≤j,s≤n,with

j>pkn or s>pkn

〈λ,Zj,s〉}}1/a3 . (3.11)

This, together with the previous calculus, implies

lim
n→∞

1
b4
n

logE exp
{

b2
n

n
〈λ, Sn〉

}
≥ 1

2
(
E〈λ,Z0〉2 +

∑

0<d(k,0)≤1

E〈λ,Z0〉〈λ,Zk〉
)
. (3.12)
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Hence, we have (3.3).

For general m > 1, (3.3) can be proved by the argument in the proof of Theorem 1.1 of
[11]. We omit the details here.

The proof is complete.

3.2 The Proof of Theorem 2.1

First, we approximate the linear random field by a linear random field of finite range
2N , which satisfies the MDP.

Let XN
j,k be the Fejér approximation of Xj,k, that is

XN
j,k =

∑
r,s∈Z

aN
r,sξj+r,k+s, (3.13)

where aN
r,s = ar,s

(
1− |r|

N

)(
1− |s|

N

)
|r|≤N,|s|≤N

.

Set

QN
n = (QN,l

n ) =
(

1
nb2

n

ZN,l
n

)

0≤l≤m

and Qn = (Ql
n) =

(
1

nb2
n

Zl
n

)

0≤l≤m

,

where

ZN,l
n =

∑
1≤k≤n

(XN
k XN

k+l − EXN
k XN

k+l) and Zl
n =

∑
1≤k≤n

(XkXk+l − EXkXk+l).

Then the family
{

(XN
k XN

k+l)0≤l≤m ∈ R(m+1)2 ,k ∈ Z2
}

is a 2N -dependent stationary field.

By (2.3), for all N ≥ 1, there exists a constant η > 0 such that E
(
eη|XN

k XN
k+l|

)
< ∞.

By Lemma 3.3, we get that for any N fixed, and for all λ ∈ R(m+1)2 ,

lim
n→∞

1
b4
n

logE exp
{
b4
n〈λ, QN

n 〉
}

=
1
2
〈λ,Σ2,Nλ〉, (3.14)

where Σ2,N is the covariance matrix given in Lemma 3.3. Then, by the Gärtner-Ellis theorem,
we know that QN

n satisfies the MDP on R(m+1)2 with the good rate function IN (x) =
sup

λ∈R(m+1)2

{〈λ,x〉 − 1
2
〈λ,Σ2,Nλ〉} . Furthermore, by [2, Theorem 4.6.2], Σ2,N

k,l can be expressed

as (2.5) with f replaced by fN , where fN (t) = | ∑
u∈Z2

aN
u eiu·t|2.

Then we should show that the approximation is a good one in the sense of the MDP,
and we establish the convergence of the rate function. These proofs are the same as the
proof of Theorem 2.1 in [8] by using the techniques of LSI. We omit the details here.

The proof is complete.
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线性随机场的经验周期图的中偏差

张施灵

(武汉大学数学与统计学院, 湖北 武汉 430072)

摘要: 在本文中, 我们证明了线性随机场的二次形和经验周期图的中偏差. 关于线性随机场的主要假

设是驱动随机变量的对数Sobolev不等式和谱密度的一些可积条件. 作为统计应用, 我们给出了单边自回归

平稳场的最小二乘估计和Yule-Walker估计的中偏估差计. 上述结论是对文献[8] 中线性随机过程的结论的推

广.
关键词: 线性随机场; 中偏差原理; 经验周期图
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