Vol 43 (2023) J. of Math. (PRC)

MODERATE DEVIATIONS FOR EMPIRICAL
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Abstract: In this paper, we prove moderate deviations for quadratic forms and empirical
periodograms of linear random fields. The main assumptions on the linear random fields are a
Logarithmic Sobolev Inequality for the driving random variables and some integrability conditions
for the spectral density. As statistical applications, we give the moderate deviation estimates of
the least square and the Yule-Walker estimators for unilateral autoregression stationary fields. The
results above are generalizations of the results for linear random processes in [8].
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1 Introduction

Consider a linear random field X = {X;; (j, k) € Z*} defined on a probability space
(€2, F,P) by
Xj,k? = Z ar,s£j+r,k+sy (11)

r,SEL
where {a,; (r,s) € Z*} is a sequence of constants, the innovations {¢,s; (r,s) € Z?} are
independent and identically distributed (i.i.d.) centered square integrable random variables,

with common law £(§0) = p, and the variance Var ({po) = 1. Assume that

Z a,,z_,s < 0. (1.2)
(r,s)€Z2

Under the condition (1.2), X in (1.1) is well defined, see Lemma A.1 in [1]. The family

{X;k; (4, k) € Z?} is strictly stationary with the spectral density given by

2
f(t) = Z aue™?| | (1.3)
u€ezZ?

where u - t := uyt; + usty for any u = (uj,uz) € Z* and t = (t1,t2) € I, I is the torus

identified with [—7,7)? in the usual way.
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The empirical periodogram is one of the main tools in the estimation of the unknown
spectral density f. It is defined by

Tat)i= | S0 emtx, P, (1.4)

2.2
(27m)%n L

where t = (t1,t3) € I, n = (n,n), 1 < u < n means that 1 < u; < n, 1 < uy < n for
u = (ur,up) € Z*.

The limit theorems of the empirical periodogram Z,, usually involve the following quadratic

forms )

= (s gkjgn X Xet)ieze-
There have been abundant literatures contributing to the study of limit theorems for Z,, and
®,,, we refer the reader to Rosenblatt [2] and references therein.

The main purpose of this paper is to estalish the moderate deviation principle(MDP in
short) for the empirical periodogram Z,, and quadratic forms ®,,. In order to do these, we
put forward sone conditions such as L?(I,dt)-integrability of the spectral density f and a
Logarithmic Sobolev Inequality (ST in short) for the law p of the driving random variable
&. Moreover, as statistical applications, we provide the moderate deviation estimates of the
least square and the Yule-Walker estimators for unilateral autoregression stationary fields.

This paper is organized as follows. In section 2, we establish the MDP for quadratic
form and the empirical periodogram, and give a statistical application based on our MDP
results. Some lemmas of dependent stationary fields and the proofs of the main results are

given in section 3.

2 Moderate Deviation Principles for the Linear Random Field

2.1 MDP for Quadratic Form

Assume the following conditions:

(H1) The law p of the driving random variable ¢ satisfies a LSI, i.e., there exists a constant
C > 0 such that
Ent,(h?) < 2CE,(|Vh|?) (2.1)

for every smooth h such that E,,(h? log* h?) < oo, where
Ent,(h*) = E,(h*log h?) — E,(h*)log E,(h?). (2.2)

(H2) The spectral density function f is in L9(I,dt), where 2 < ¢ < +00.

(H3) The sequence of positive numbers {b, },ey satisfies that b, — oo and b,n'/971/2 — 0
as n — o0o. Here ¢ is the constant appearing in (H2).
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Remark The LSI (2.1) implies that there exists some constant § > 0 such that
E, (e‘slx‘2> < 0. (2.3)
See [3, Chapter 3| for more details on the LSI.
Let . .
. E(€) ~3EQ)
E(£3)?
be the cumulant of order 4 of the random variable &q.
= (Ak)o<k<m € RO™HD?)

Theorem 2.1 Assume (H1)-(H3) hold. Then for every A

1
doa ) (Xka+l—EXka+l)> =3 > TR, (24
0<k,I<m

0<i<m 1<k<n

1 b2
nhj& E log E exp (1:

where Ei’l,O < k,l < m is given by

Ei,z = /2005 (k-t)cos(l - t)f2(t)dt
+/€4< 27r)2/f(t cos(k - t)d )( /f ) cos(l - tdt> (2.5)
In particular,
<nlb2 ) (XkaHEXkXHl))
" 1<k<n 0<i<m

satisfies the LDP on R(™+1” with speed b2 and with the rate function given by

Z )\ka — % Z /\kEiJ)\L

2
} , 2= (Zk)ggkgm S R(m—"_l) .
o<k, l<m

I(z) = sup
)\GR("H’I)Z 0<k<m
As a consequence of Theorem 2.1 , we have the following MDP by the contraction
principle ([4, Theorem 4.2.1]).
Corollary 2.2 Assume (H1)-(H3) hold. For alll >0, = > (XpXpri —EXpXpq)
" 1<k<n

satisfies the LDP on R with speed b? and with the rate function given by

2,2

Iz) =+
21/(2m)2 [, 2cos2(L - t) f2(t)dt + ky (1/(27)2 [, f

(£) cos(l - t)dt)
with the convention that a/0 = +oo for all a > 0 and 0/0 := 0

2.2 MDP for the Empirical Periodgram
From Theorem 2.1 and the projective limit method (see [4]), we obtain the functional

type’s MDP for
n
La(t) = 5 (Zn(t) — EZ,(2)).
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Theorem 2.3 Assume (H1)-(H3) hold. Let 1 < p < 2 and p’ € [2, +0o0] the conjugated
number, i.e., 1/p+1/p’ = 1. Assume that

b,nt/ /P =1/2 _ 1,1 1

, - < -
P q 2

Then (L£,),>1 satisfies the LDP on (L?(I,dt),o(L?(I,dt), L (I,dt))) with speed b% and

with the rate function given by

1 7 (t) Ka ( 1 n(t) >
dt — d
(27r)2/14f2(t) i (27r)2/12f(t) ‘)
J(n) = if kg > —2, nis even, ndt < fdt and 1 ¢ LA(1,dt);

f

(2.6)

4+ 00, otherwise,

where 7 is even means that n(t) = n(—t),vt € I.
As a consequence of Theorem 2.3 , we have the following MDP .
Corollary 2.4 Under the assumptions of Theorem 2.3 , we have that for all h €
LY (I,dt),
lim sup bi‘* logE <ebiﬁf’ h(t)c"(t)dt) = %O’QUL),

where
1

o2(h) = & /12712(t)f2(t)dt+ﬁ4 <(271r)2/1h(t)f(t)dt>2

with A(t) = (h(t)+ h(—t))/2. In particular, ﬁ [; h(t) L, (t)dt satisfies the LDP on R with

speed b2 and with the rate function given by Ij,(z) :=

2
202(h) *
2.3 Unilateral Autoregression Stationary Field
Consider the unilateral autoregression process:
Xsp=pXs_14+€st, s, teEN, (2.7)

where the sequence {e,}s ez is i..d. with common law p, satisfying a LSI, and E(e,;) =
0,E(e?,) = 1 and p € (—1,1) is the unknown parameter. Assume that the sequence
{Xok}ren is i.i.d. with common law of >, pFe_y o, which is independent of {e;}s¢>1.
{Xst}s,ten is thus a centered stationary field, which is a special one of the unilateral autore-
gression fields, see [5] and [6].

Let p,, be the least square estimator of p given by

 Dacigyen XiiXio1

n

2a<(igyen Xis11
and let p,, be the Yule-Walker estimator of p given by

B = Zogm’)Sn XXz
2 0<(ig)<n Xi-1j-1
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It is well-known that p, and p are consistent and asymptotically normal, see [5] and [6].
Moreover, Bercu et al.[7] showed that the LDP of the Yule-Walker estimator is better than
the one of the least square estimator.

By using Theorem 2.1 and the same proof of Proposition 3.1 in [8], one can prove the
following MDP of the least square and the Yule-Walker estimator. These two estimators
share the same MDP. Here we omit the proof.

Proposition 2.5 Let (b,) be a sequence of positive numbers satisfying that b, — oo
and b,n'/771/2 — 0 as n — co. Then 3 (P — p) (or 33 (Pn — p)) satisfies the LDP on R with

speed b2 and with the rate function given by

I(x) =

3 Proofs of Main Theorems

The proof of Theorem 2.1 and Theorem 2.3 are similar to that in [8]. Here, we only
give the sketch of the proof for Theorem 2.1 . First, we give some lemmas.

3.1 Several Lemmas

In this part, we give several facts concerning the Toeplitz matrix, the Fejer approxima-
tion and the MDP of m-dependent stationary fields.
|Ax|

For an n x n matrix A, denote the usual operator norm ||A| = sup ar - For any even

function h € L'(I,dt), Tp(h) = (Fr—1(h))1<ki<n is the Toeplitz matrlx associated with h,
where 7 (h) is the kth Fourier coefficient of h given by

fre(h) = /Ie““'th(t)dt, Vk € Z°. (3.1)

Lemma 3.1 [9, Lemma 1] If f € L9(I,dt), where 1 < g < oo, then for all n > 1, we
have

ITa(Hllg < 21 £l
Lemma 3.2 [9, Theorem 1] Let f, € L% (I,dt) with ¢4 > 1 for k = 1,--- ,p and
P
> (1/qx) < 1. Then
k=1

P

[ XA

Let m be a given positive integer, a random field (Z,)nez2 is called m-dependent, if
for any finite sets A, B C Z? with d(A, B) > m, the o-algebras o{Z;; (k,l) € A} and
0{Zy1; (k,l) € B} are independent. Here

d(A,B)= min {max{|ka — kgl |la — ls|}}.
(kasta)ea,
(kp.ip)€EB
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See [10] for the study of the strong large number law for m-dependent random fields.

The following Lemma is the generalization of the MDP result for the m-dependent
stationary processes in [11].

Lemma 3.3 Let (Z,,)ncze be a centered m-dependent stationary random field in RY,
such that

E (e"‘Z(’l) < oo, for some a > 0. (3.2)
Then for all A € RV,
o1 L 1
Jim o logE(e Rasean M) = S(B(N Zo)® + ) BN Zo)(NZk). (3.3)
0<d(k,0)<m

Proof The proof is inspired by the method in the proof of [11, Theorem 1.1]. Here, we
give the sketch of the proof. First, we prove this lemma in the case m = 1. Fix the integer
p > 1 and for each n > 1, we write n = k,,p + r,,, where k,, and r, are non-negative integers
with 0 < r, < p—1. Define

Yis= Z Zigy, 1,8=1,2--

(r—1)p<j<rp,
(s—=1)p<k<sp

Then, {Y; s }(r,s)en2 is an independent and identically distributed sequence. By the moderate

deviation principle for i.i.d. random variables (see [4, Theorem 3.7.1]), we have

1 b2
lim — logE = AY,
im og exp{n Z A\Y. o}

n—oo bt
n 1<r<kn,
1<s<kn
1
:27?2((;; — 1B\, Zoo)® + (p—2)* Y E(A Zoo)(\, Zij)
ij=+1
+(p—-1—2) Y BN\ Zoo) A Zio+ Zo,). (3.4)
i=+1
Similarly,
1 B2

nh—>nolo o log E exp {ﬁ Z Z (A, ZLS)} (3.5)

1=1 1<j,s<pkn,with
j=pl or s=pl

1
= lim o (k;i(zp — DE(\, Zo0)® + (2kn (ke — 1) + 1) ‘;11@@, Zoo) (N, Zi)

2% (b — 1) > BN, Zo o)A, Zi—i) + kn(kap — 1) Y E(X, Zoo) (A, Zio + Zo,i>>
i=+1 i==+1

1

— ((zp “DEA Zoo) +2 Y ENZoo) N Zig) +p Y BN Zoo) (A Zio + Zo,i>).

=53
p i,j=+1 i=+1
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By (H3) and (3.2), we have

n—oo

1 b2
lim m logEexp{; Z (AN Zj6)})=0. (3.6)

1<j,s<n,with
j>pkn or s>pkn

Let S, = Y. Zj, noticing that

kn
YooYt d X Zit Y, Z (3.7)

1<r<kn, 1=1 1<j,s<pkn,with 1<j,s<n,with
1<s<kn j=pl or s=pl j>pkn or s>pkn

Then for any a1, as,a3 > 1 with 1/a; + 1/as + 1/a3 = 1, by the Hélder inequality, we have

b2 b? as
Eexp {~2(),Su)} <{Eexp{a " DDRRES A3 {Eexp{a2— Z Sz
1<r<kn, —1 1<j,s<pkn,with
1<s<kn j=pl or s=pl
- {Eexp{a by Sz (3.8)
3 n 7, s .

1<j,8<n,with
j>phkn or s>pkn

y (3.4)-(3.6), we know that

2
hm bjlogEeXp {b;;()\,S,J} (3.9)
<T ((p —1PE( Zoo)> + (-2 Y BN Zoo)(\ Ziy)
ij==+1

+-1P-2) Z E(X, Zo,0){\, Zio + Zo,z'>>

i=%1
—l—ﬁ(@p—l) N Zo0)?+2 3 BN Zoo){A Zigh +p D BN ZoohA Zio + o) ).

i,j==%1 i==%1

Firstly letting p — oo and then letting a; — 1 in (3.9) , we have
by 1 >
lim 171 log E exp {()\ S >} 5 (B Zo)? + > ENZo)(N ). (3.10)
0<d(k,0)<1
Similarly, from (3.7),

Eexp{cf’;l > <A,Yr,s>}s{Eexp{%< Su) 1}/ {E exp{~=2 Z . Nz

kn, =1 1<j,s<pkn,with
kn j=pl or s=pl

IANIA
)
INIA

1<r
1

T SID D) (3.11)

1<j,s<n,with
j>pkn or s>pkn

This, together with the previous calculus, implies

lim b%logEexp {bjw,sn)} > %(E(A,Z())Q + Z E(X, Zo) (A, Zk)). (3.12)

n—oo
n 0<d(k,0)<1
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Hence, we have (3.3).

For general m > 1, (3.3) can be proved by the argument in the proof of Theorem 1.1 of
[11]. We omit the details here.

The proof is complete.
3.2 The Proof of Theorem 2.1

First, we approximate the linear random field by a linear random field of finite range
2N, which satisfies the MDP.

Let XY, be the Fejér approximation of X x, that is

XJJY]C = Z ai\,fsgj#nk#»sa (313)

r,8SEZL

hereaN,:a”(l_ﬂ) (1_@) -

i " 7 N N [r|<N,|s|<N

Set
QN — ( N7l) — <1ZN,l> and Q — (Ql) _ <1Zl>
nby, 0<i<m nb? 0<i<m

where

Zyt =Y (XX —EXY X)) and Zh = ) (XeXep — EXg Xip).

1<k<n 1<k<n

Then the family {(X,iVX,iV_,'_l)ongm e RMD* ke ZQ} is a 2N-dependent stationary field.
By (2.3), for all N > 1, there exists a constant 1 > 0 such that E(emx,ﬁ’xé\’m) < 0.
By Lemma 3.3, we get that for any N fixed, and for all A € ]R(m“)Q,

1 1
lim ;5 logE exp {bh( X, Q) } = 5<>\, Y2NVA), (3.14)

n—oo

where 2% is the covariance matrix given in Lemma 3.3. Then, by the Girtner-Ellis theorem,
we know that QY satisfies the MDP on R with the good rate function Iy(x) =

sup {()\, x) — %()\, Ez’NM} . Furthermore, by [2, Theorem 4.6.2], Ei]lv can be expressed
AER(m+1)2 ’
as (2.5) with f replaced by fV, where fN(t) =] > alle™?|?.
u€ezZ?

Then we should show that the approximation is a good one in the sense of the MDP,
and we establish the convergence of the rate function. These proofs are the same as the
proof of Theorem 2.1 in [8] by using the techniques of LSI. We omit the details here.

The proof is complete.
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