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Abstract: We consider the hydrodynamics of compressible flow of active liquid crystals model
in the @-tensor framework. The existence of local-in-time classical solution with large initial data
in the whole space or torus is established. Furthermore, with an assumption on the coefficients, we
also prove the global-in-time existence of classical solutions near a constant state with small initial
data on the torus.
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1 Introduction

Liquid crystals are a state of matter which may flow like a liquid but the molecules
in which may be oriented in a preferred direction. They have properties between those of
liquids and solid, and in general their phases can be divided into thermotropic, lyotropic
and metallotropic phases, based on the differences of their optical properties. One of the
most common liquid crystals phases is nematic phase for which the elongated molecules have
long-range directional order with their long axes roughly parallel (see [1, 2]).

A number of mathematical theories have been made to study the hydrodynamic of
nematic liquid crystals in the literature. The earliest so-called Oseen-Frank theory seems to
be established by Oseen [3] in 1933, later then be revised by Frank [4] in 1958. Then Onsager
[5] in 1949 and Doi [6] in 1986 proposed the Doi-Onsager theory. During the period of 1958
through 1968, Ericksen [7] and Leslie [8] established the Ericksen-Leslie theory to describe
the dynamic behavior of the liquid crystals. In 1995, the Landau-de Gennes theory proposed
by Gennes in [1]. In fact, under some assumptions, the above theories can be derived or
related to each other, we refer the readers to [9-14] and the references therein.

In the reality, we call active particles the particles which have the ability to move

autonomously in a surrounding fluid by converting energy into directed motion. So the
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active particles are always taking the action to constantly maintain the motion out of the
equilibrium by internal energy source, rather than by the external force applied to the system.
Active hydrodynamics are often used to describe the fluids with active particles, which are
fundamentally different from the fluid case constructed by the passive particles.

Generally speaking, we have two different frameworks to describe the motion of liquid
crystal molecules in the fluid. For the dynamic behavior of liquid crystal molecules, one of
them is based on the equation describing the orientation of the molecules. This feature is
also presented in the Ericksen-Leslie model [7, 8]. Another one is the Q-tensor framework
(see for an introduction to the Q-tensor framework [15], [16]), in which the local orientation
of the molecules is described by a function @ taking value from © C R? in the set of the
so-called 3-dimensional Q-tensors. More precisely speaking, it is a 3 x 3 symmetric and

traceless matrix for the 3-dimensional case, namely
S8 .— R>3:Q, =Qi, t =0,4,7=1,2,3
0 . {Q € . Qz] Q]zv I’(Q) 9 Za] )& }

While, the evolution of the @)’s can be obtained by the free energy of the molecules, combining
with the transport, distortion and alignment effects caused by the flow.
In this paper, we consider the following compressible active liquid crystal system in the

Q-tensor framework (see [17]) in the domain Q:

Orc+ (u-V)e = DyAc,

Op+ V- (pu) =0,

O(pu) + V- (pu®@u) + VP(p) — pAu— (v + p)Vdivu =V -7+ V - 0,
XQ+u-VQ+(QQ—-QQ)=TH[Q,].

(1.1)

where ¢ € R is the concentration of active particles, p and u € R3 are the density and velocity
of the fluid, respectively. ) is the nematic tensor order parameter which is a traceless and
symmetric 3 X 3 matrix. P = ap” denotes the pressure satisfying y-law with v > % and
the constant a > 0. Dy > 0 is the diffusion constant, 4 > 0 and v > 0 are the viscosity
coefficients. @ = 2(Vu — Vu'") is the antisymmetric part of the strain tensor, and T~ > 0
is the rotational viscosity. Moreover, the tensor

H[Q, ] i= KAQ — £(c— ¢.)Q + b(Q* — ™0, — ¢, Qur{Q?}

describes the relaxational dynamics of the nematic phase, which can be derived by the

Landau-de Gennes free energy, that is, H,; = 6‘57; with
ij

F= [ (5= c)u@) - (@) + 5 (@) + §IVQP)da

where K > 0 is the elastic constant for the one-constant elastic energy density, ¢, > 0 is

the critical concentration for the isotropic-nematic transition, and x > 0 and b € R are
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material-dependent constants. The stress tensor o = (0y;) := 07, + 0f; is constructed by the
following two parts:

o} = QikHi;[Q, c] — Hix[Q,]Qx; and  of; = 0.6°Qi5

where o7; is the stress due to the nematic elasticity, and o7 is the active stress tensor which
describes contractile (0. > 0) or extensile (o, < 0) stresses exerted by the active particles
along the director field. 7 = (7;;) is the symmetric additional stress tensor with the following

form:
Tij = F(Q)0y; — K(VQ © VQ)yj

where

F(Q) = %WQE + %tT(QQ) + %tTQ(Q2> and (VQ © vQ)ij = 8inm8lem .

Here and after, we use the Einstein summation convention, i.e. The repeated indices are
summed over.

We then rewrite the system (1.1) as

( Oic+u - Ve = DyAc,
dp+ V- (pu) =0,
O¢(pu) + V- (pu®@u) +aVp' = pAu+ (p+v)Vdivu + V- (F(Q)I3 — KVQ © VQ)
+KV - (QAQ — AQQ) + 0.V - (*Q),
[ 0Q+u-VQ+(QQ—-QQ)=TH[Q,d],

(1.2)
with o, € R based on the above representations. The unknown variables are subjected to
the following initial conditions:

(C, P Q)(t7l’)|t:0 _ (ci",pm,um,Qm)(x) c (]R, R+,R3,S((J3))7 (13)

and (t,z) € (RT, Q).

Active hydrodynamics have been widely used in applications and attracted more atten-
tions in recent years, especially in the theoretical physics community. In fact, a large class of
active systems can be treated as active nematic liquid crystal system. We refer the readers
to [6, 18-24] and the references cited therein for more applications and discussions. While
there are less rigorous mathematical description and analysis about active nematic liquid
crystals. Recently, Chen-Majumdar-Wang-Zhang [25] studied the existence of global weak
solutions for the incompressible active liquid crystals model [21, 26] in two and three spatial
dimensions. They also obtained the higher regularity of the weak solutions and the weak-
strong uniqueness by using the Littlewood-Paley decomposition for the two-dimensional case
n [25]. As to the compressible active liquid crystal model [21, 26], the above four authors
also established the global weak solutions in three spatial dimensions in [17].
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In the present paper, we study the local-in-time classical solution for system (1.1), or
(1.2) with large initial data (1.3) in the whole space R? or the torus T3, as well as the existence
of global-in-time classical solution on the torus T* by using energy method. Our study is
motivated by the works [17, 25] and the methods to be used to study the well-posedness
for the compressible Ericksen-Leslie model in [27]. By noticing the mass conservation law,
they derive that the L°°-bound of density can be controlled by the L**-bound of divu under
the initial density p™ with positive lower bound p and upper bound p. As a result, the
L*>-estimate of p and the functions typed with the term % can be dominated by ||divu||ze
in deriving the a priori estimates and the energy estimates of approximation system.

Notation and Convenient We denote the Sobolev space by H*(Q2) for integer k > 1,
equipped with norm || - [z, and || - ||z is the corresponding homogeneous Sobolev space.

(+,-) is the standard inner product with respect to the space variables z in the whole space.

For the case if f and g are vectors, then (f, g) = / f(x)-g(x)dz; and if A, B are matrices,
Q

then (A, B) = / A : Bdzx with A : B = tr(AB). The product of VA ® VB is a matrix with

Q
ij component (0;A : 0,B).
The Frobenius norm is used as the norm of a matrix, denoted by |Q|*> := tr(Q?) =

Q:;Q;i - Then, we can define the Sobolev spaces for the Q-tensor as follows:

H(Q):={Q:Q— sg3>|/ﬂ > 102QIdr < oo},

la|<s
where o = (o, 9, a3) with «; is an nonnegative integer for ¢ = 1,2,3, and 02Q =
051092002 Q, 0;,Q = 0,,Q. Moreover, if there is a general positive constant C' such that

f(t) < Cg(t) for any t € RT, we denote it f(t) < g(t) for simplification.
Furthermore, in order to state our main results in a simple way, we define the following

two Sobolev weighted-norm (with wight ¢) as
— @ £12 % L @ £12 %
1fllars = (|Z /ﬂ 3105 f1Pdx)* . (1 fllpy = (HZ /ﬂ ¢l07 f1*d)*®
al|=0 al=1
and denote the quantity A;(p) as A (p) = |lpl%. + %HPHZW Based on the above
Pl(p)

P
notation, we define the free energy £(t) as

E(t) = A(p) + llellr + llullz; + 1QI%- + KIVQIE. | (1.4)
and dissipation D(t) as
D(t) = Dol|Vellz: + ul Vu(r)lli: + (1 + v)divullf. + TK[VQ[%. + TE*[|AQ. . (1.5)

In particular, the initial energy is £ = AL (p" )+ ||| 3 +|lu™ |3 H Q| F K [VQ™ |13 -
As the first result of this paper, we study the local-in-time solution for the system (1.2)-(1.3)

with large initial data. The main theorem is stated as follows:
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Theorem 1.1 (Local existence) Let © be the whole space R? or the torus T3,
and the integer s > 3, if the initial energy £™ < +o0, and p < p™™ < p for some positive
constants p and p, then there exist 7' > 0 and Cjy > 0, depending on £ and the coefficients
of (1.2), such that the system (1.2)-(1.3) admits the unique solution (¢, p, u, Q)) satisfying

c €L>®(0,T; H*(Q)) N L*(0, T; H*t1(Q),
p €L®(0,T; Hs,, () N LY (),

(

( 20
, (1.6)

u €L>®(0,T; H3(2)) N L*(0,T; H*(K2))

(

Q €L>®(0,T; H*T(Q)) N L*(0, T; H*t1(Q)) .

Moreover, the energy inequality
t
£(t) +/ D(r)dr < Cy (1.7)
0

holds for all ¢ € [0,7T7.
We will prove Theorem 1.1 by using the energy methods. We now sketch the main

difficulties we have met and the novelties to be used in the proof of the above theorem.
The first difficult is how to control the L*°-bound of density. To overcome this difficulty
we use some techniques inspired by the studies in compressible Navier-Stokes equations.
Employing the mass conservation law, we can derive the argument that the density p(t, )

can be bounded by the L>-norm of divu (see Lemma ) in the spirit of [27], precisely speaking,

t t
Bexp{ - }1/ ||divu||Loo(s)ds} < p(t,z) < ﬁexp{ - 411/ ||divu||Loc(s)ds} (1.8)
0 0

under the assumption 0 < p < p™ < p for the initial density p*. As a result, the L>-bounds
of the density p(t,z) and % can be bounded by the L*>-norm of divu(t,z) in the derivation
of the a priori estimates.

The second difficulty is how to deal with the terms with highest order derivative in the

derivation of the a priori estimate. Here we will use the following cancellation relation

(07div(QAQ — AQQ), 7u) + (07 (QQ — QQ), 9T AQ) (1.9)
(05QAQ — AQDZQ,070Q) + (95QQ — QI7Q, 7 AQ) + (M1, 950) + (Mo, 5 AQ)

with the mediate terms M; and My (see (2.16)), which enables us to avoid controlling the
highest order derivative term 0SdivAQ). We also remark that the symmetry and traceless
play an important role in the cancellation relation.

Therefore, in order to construct approximation solutions (c¢", p™, u™, Q™), we carefully
design an iteration scheme. The mass conservation equation of p"*! is designed with the
velocity u™ such that the norms [[p" ||~ and ||pn—1+1||Loo can be dominated by ||divu"|| 1~
by using the inequality (1.8). On the other hand, the construction of the u-equations and
(QQ-equations in approximation system should be coupled together in order to use the can-
cellation relation (1.9). The corresponding terms in (1.9) are designed as V - (Q"AQ" ! —
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AQ"TIQ™) and QO™ — QP FLQ™ (see (3.1)). Consequently, we can close the energy esti-
mates of the approximation system. Then we get the existence of the solution sequence of
the approximation system. However, the uniform existence time interval can not be obtained
directly. So before getting the solution of the initial equations (1.2)—(1.3), we need to derive
that the solution sequence for the approximation system has a uniform existence lower time,
see Lemma 4.1. At last, based on the estimates of the approximation system, we then prove
the first main theorem of this paper.

It is worth pointing out that we do not obtain global-in-time solutions on the whole
space for the active liquid crystal model at present. We remark here that the difficulty is
caused by the linear term ¢, with the critical concentration ¢, in H[Q,c|. In fact, in the
process of deriving the a priori estimates, we multiply @ in the Q-equation of the system
(1.2) to get the dissipation but with no L2-dissipation of @, so the linear term {(c,.Q, Q) can
not be controlled when we deal with the global-in-time classical solutions. Even though we
consider the global solution near a constant state (c,, 1,0,0), this difficulty still exists, which
will be converted to deal with the term o,c?(divQ,u). However, when the domain to be
considered is the torus T?, then there exists a constant C' depending on the volume of T?
such that

0. 2divQ, u) < || T Qo | Vul 12 < 5o

+ &) Vull7- (1.10)

by using Hélder inequality, Sobolev embedding inequality ||Q||zs < [[VQ|| L2, and the Cauchy
inequality. Because of the dissipations KT||[VQ||gs and p||Vu||%. we have obtained, then
C‘T c* < £L the terms on the right-hand side of (1.10) can be

absorbed by the above two dlSSlpatIOD terms.

under the assumption that

Based on the above ideas, we then study the global existence of classical solutions
(¢, p,u, Q) to the system (1.2) near a constant state (c,, 1,0,0) on the torus T3. We rewrite
c and p as the following forms: c(t,x) = é(¢,x) + ¢, p(t,x) = o(t,z) + 1. Submitting the
above identities into system (2.6), we then have
( 016+ (u-V)é = DyAé,
de+ V- ((1+0u) =0,
dyu+u - Vu+ Ty, = [uAu + (i + v)Vdive] + {2V - (F(Q)L; — KVQ 0 VQ)
SV (QAQ — AQQ) + £5V - [+ ¢,)2Q)
9Q+u -VQ+(QQ-QQ)=TH|[Q,C+c.],

1+g

(1.11)
where the form of H|[Q, ¢+ ¢.] is

H[Q,¢+ e.] = KAQ = 56Q + b(Q* — "(P15) — c.Qtr(Q?)
and (t,z) € R x T3. We impose the initial data to the system (1.11) as

(€, 0,1, Q)(t,7)|e=0 = (€™, 0™, u™, Q™) (2), (1.12)
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with é" = ¢ — ¢, and ™™ = p'™ — 1. Here the functions (¢, p™, v, Q™) are given in (1.3).

For convenience of notation, we denote the initial energy as
EM =& 3 + o™ e + Iu™ e + Q1 Zen -

Then we state the second main theorem of this paper in the following.

Theorem 1.2 (Global existence) Let € be the torus T2, and the integer s > 3,
assume that %Ufcﬁ < % for some constant C' depending on the volume of torus T2, then
there exists an ¢y > 0, depending only on the coefficients of the system (1.11) and s, such
that if £ < e, then the system (1.11)-(1.12) admits the unique global solution (¢, o, u, Q)
satisfying

0 € L>®(R*; H(T?%))
¢ue L>(RT H(T?) N L*(RT; HVY(T?))
Q € L™ (RT; HTH(T?)) .

Furthermore, the energy bound
sup (el + el + lull. + QU )+ [ Dol Velfy. + §Valfy.(r)dr < C1é™
2 0

holds for some constant C4, depending on the coefficients of the system (1.11) and s.

To show the existence of global-in-time classical solutions on the torus T?, the dissipation
we have obtained in local-in-time energy estimates is not enough. Indeed, we need some
dissipation of p. Thanks to the construction of the pressure P(p), satisfying P’(p) > 0, the
term V P(p) in the velocity equations of (1.2) will give us some dissipation on the density p
by multiplying the u-velocity with Vp (or V¥p for higher order estimates).

As we all know, there are some mathematical works on the liquid crystal model in
the Q-tensor framework. In [28], Feireisl-Schimperna-Rocca-Zarnescu proved the existence
of global-in-time weak solutions for the coupled incompressible Navier-Stokes system and
a nonlinear convective parabolic equation describing the evolution of the @-tensor. For
another system in the @Q-tensor framework with arbitrary physically relevant initial data
in case of a singular bulk potential proposed in Ball-Majumdar [9], the above four authors
[29] also established the global-in-time weak solutions. In [30, 31], Paicu-Zarnescu studied
the coupled incompressible Navier-Stokes and @-tensor system, proved the global-in-time
existence of weak solutions for d = 2,3 and the existence of global regular solutions with
sufficiently regular initial data for d = 2.

Organization of the Paper This paper is organized as follows: in the next section,
we derive the a priori estimate, which consists of the L?-estimate and the higher order
estimate of system (1.2). In Section 3, we construct the approximation system by using
iteration method and obtain its energy estimates. In the forth section, we give the proof of

Theorem 1.1, namely, the existence of local-in-time solution of system (1.2)-(1.3) based on
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the obtaining energy estimate in Section 3. In the last section, the existence of the global-
in-time classical solution (c, p,u, Q) near the constant state (c,,1,0,0) on the torus T® is

proved.

2 A Priori Estimates

2.1 Basic Energy Estimate

In this subsection, we derive the L2-estimate of the system (1.2)-(1.3) under the as-
sumption that (c, p,u, Q) are sufficiently smooth, which will give us the possible structure
of the higher order estimate. We state the following lemma about the basic energy bound.

Lemma 2.1 (Basic energy bound) Let (¢, p,u, Q) be a sufficiently smooth solution
to the system (1.2), then

2 /Q (Ief + plul? + 227 + QP + KIVQP + 51Q1" ) dz + Dol| Vel + || Vul3:
+ (p+v)|divul7: + TK[VQ| L + TKZ|AQIZ: + e.T|Ql1: + T [1Q] 1o
1 3 1 7 1 3
Slull 22 IV ull £ llell £ [ Vell £ + 1QUZNIVQIZ: (1AQN 22 + Q2 + Q221 QIIF2)
+ (llellz21QNlz2)* (IVell2 V@ z2) * (el = Vullz2 + | AQ] 2)

+llelm1QN2:IVQI 2. (1 + 1QIIL:) + 1QNZ: + IVQIZ: + IR+

(2.1)

Proof We multiply the first, third and the forth equations of system (1.2) with ¢, u
and —KAQ + Q + c.Qtr(Q?) respectively, and then integrate over the space to get

Q|*dz + Do|Vel[Z2 + | Vull7

Il plul? + 2257+ QF + KIVQP + 5
T (4 v)lldival 2 + TK[VQ|2: + TK2JAQ|Z: + e.TQL: + TY|Q| %
=—(u-Ve,c) — K(V-(VQoOVQ),u)+ (V- (F(Q)3),u) + (u-VQ, KAQ)
(1 VQ,Q + e Qu(QY) + K(V - (QAQ — AQQ), u) — (9Q — 2, KAQ)
1(0Q - Q9,Q+ c.Qu(Q?) + 0. (V- (PQ), u) + Th(252Q, ~KAQ + Q + . Qtr(Q?))
CPR(QY AQ) + ID(QA Q + .Qir(@Y) + 2. TK (Qir(Q), AQ)

=31 (2.2)

Straightforward calculation enables us to get I + I3+ Iy + I5 = 0. Let D = VU%W' Note
that Vu = D + §, then using the symmetric of D and @, skew-symmetric of 2, one has

I+ I; = K(QAQ — AQQ, Q) — K(QQ — QQ,AQ) = 0.

and

Iy = 2(Q, Q% + c.Qtr(Q*)) = 0.
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We then estimate the other terms on the right-hand side of (2.2). For the term I3, simple

calculation tells us

Iy = QC*FK/ QPIVO|2dr — c*I‘K/ IV(IQ2)Pdz < 0.
Q Q

Utilizing the Hélder inequalities and interpolation inequality || f||La(q) < HfH%Q(Q) ||Vf||%2(ﬂ)
for any f € H'(£2), we have
1 3 1 T
I <l al[ Vel llell o S Ml 2=Vl g el 22 Vel 22

I SQIZNAQIL: S IQIZNVQIZNAQ L2 -

Similarly,
Iy S llella=(1Vell 2| @l z2) T ([ Vell 2 V@l ) 2 | Vul| 2
Ly SIQNZ:IVQIZ (A + Q%)

and

1 3 1 3 1 3
Lo Slellz= Vel 22 1QN - IV 2 | AR = + [lel 22| @Il 22 IV QI 22
1 3
+ el QU VRN ZIQUL + 1N + IVQIT: + QI -

Consequently, summing up with the above estimates we have the bound (2.1). This

completes Lemma 2.1.
2.2 Higher Order Estimate

In this subsection, we derive the higher order estimate for the system (1.2)-(1.3). Before
doing it, we need the following two lemmas. The first lemma tells us that the L*°-bound of
density in the system can be controlled by the L°°-norm of divu, which plays an key role
in our calculation to close the energy estimate. By deriving the L*°-bound of density p, we
have used the mass conservation equation and the characteristic line method. Here we point
out that the proof can be found in Lemma 3.1 of Section 3 in [27].

Lemma 2.2 Assume that p < p™ < p for some positive constants p, p, and density p

satisfies the second equation of (1.2), then the following inequality

t t
pesp | - 1/ Idivalo~ (s)ds } < p < pexp {1/ Idived]z-~ds } (2.3)
0 0

holds.

The second lemma gives us the L2-bound of the derivative for a general smooth function
f(p). Based on the following lemma we then can bound the terms such as 83(%) (1< ol <5s)
in terms of the L*°-bound of divu.

Lemma 2.3 Let f(p) be a smooth function, then for any positive integer k& and
p € H*(R) U L*(R), we have

k i
5§f(p):Zf(“(p) > IV (2.4)

Yoy ki=k ki >11=1
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In particular, when p satisfies the assumption stated in Lemma , and f(p) = %, we then have

%

k . . +
il 141 .
IV @l <30 e { T [ aivalieas} 3 TVl
i=1

S ki=kk>1 I=1

t
<Clp.tyexp {52 [ aivulwds} 211l )

<2(u) Zx(llpll g+)

where C(p, k) is the constant depends on p and k, Z(u) = a; exp {a2 fot || divas|| po ds} with

. k .
generic constants a; and as, and Py (z) = ZFl 7.

Proof we can prove the lemma by induction. Here we omit it for simplicity.
Based on Lemma , we have derived that p has a positive lower bound. Hence we can
rewrite the system (1.2) as

Oic+u-Ve = DyAc,

Op+V-(pu)=0,

O +u-Ve+ 2VpY = LuAu+ U Vdive + 1V - (F(Q)I; — VQ © VQ) (2.6)
+EV - (QAQ — AQQ) + %V - Q).

8Q+u-VQ+ (QQ—QQ) =TH[Q,d.

We now deal with the higher order estimates of system (1.2). It is equivalent to obtain
the higher order estimate of system (2.6). The lemma about the a priori estimate of system
(1.2)-(1.3) is stated as:

Lemma 2.4 (The a priori estimate) Let the integer s > 3, and under the assump-
tion that (c, p,u, @) is a sufficiently smooth solution to the system (1.2)-(1.3) on the time
interval [0,7]. Then there exists a positive constant C', depending only on the coefficients
of system (1.2) and s, such that for all ¢ € [0, T,

4 4 5+2
i 3 1 i 1 i
L4 e()+D(t) < c[zga (D+2(w) [E0+EF ()] +DH (1) Y €3 (1)+2w)DH (1) Y & (t)} .
1=2 =2 =1
(2.7)
Proof Fix any integer s > 3, for any positive integer k (k < s), we take the derivative
operator 0% (|a] = k) on the equations of (2.6), and multiply the result equalities with 9%c,

@@?p, p0Su and —KOSAQ + 05Q), respectively, then integrate the resultants in €2 with
respect to . Then we obtain

14 i B |gep? + |02 + ploul® + |02 QP + K05 VQ[Pda

+ Dol Velz + pllog Vullz: + (u+ )07 divul7. + TK (|0 VQI[7- + K07 AQ|Z2)
:[k_’_Jk’
(2.8)
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where

I* =—(03 (u- VQ),97Q) — (95 (u- Ve), d5¢) + (97(2Q — QQ),8;Q)
1t I
—(P'(p)95 Vp, 07 u) — (P'(p)0y divu, 03 p)

~~
ke
13

+ 1O(Z), 102 ) — (u- VO p, P02 p) + 0,02V - (2Q), O5u)

p

Ik I
+ K(02V - (QAQ — AQQ), 02w + K(02(Q0Q — 0Q), 92 AQ)
1

+ K(02(u- VQ), 05 AQ) — K(95V - (VQ © VQ), 95u)

Iy
+ 52502 [(c — ) Q), 05 AQ) — 5F (92 ](c — ¢.)QL, 02Q) + (92 V - (F(Q)T), D5w)

Ik Ik
+B0(02(Q* — My), - KOTAQ + 02Q) + e[ [Qur(QY)], KO AQ — 92Q)

g k
If, Iy

(2.9)
and

TE =—([02, pdivlu, “LP0% p) — ([0 u- Vo, FLP0%p) + ([0 u - Vu, pdu)

-~

Jk T3

—([02, T2V p, pou) + u([02, L Alu, p0su) + (u+ v){[05, L Vdiviu, pd2u)

Tk Tk
+ K([07, S div](QAQ — AQQ), pdgu) + 0.([07, 1div](c*Q), pdyu)
JE b

+ (02, 2iv)(F(@Q)Ls ~ KVQ © VQ), pgu).

~~
k
J?

(2.10)

We then estimate the terms in I* and J*. First, we estimate the terms in I* one by

one. For the estimation of IF, by using Holder inequality and the interpolation inequality
1 3

I fllee SNV F]E, for any f e H'(S), we can derive that

(0 (u-Ve),05¢) = (u-Vogc+ dgu- Ve, 05¢) + Z CS (05 u0y* Ve, 0y c)

ajtaz=aq,
1<]an|[<k—1

Shdivallp=[05el72 + 05 ull | Vel e llOFelle + > 105 ull el|0g> Vel al|Og el 2

a1 tas=a,
1<]on [<k—1

Slull g [1Vel i+ IVl e + [[dival )llell.

Hs Cl
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Similarly, (07 (u-VQ),07Q) S [lull - V@Il a-l1@ll - + (IVull zr2 + [[divu )| Q]I - Hence,

one has

I S Nl g (Ve e el

Q%) . (2.11)

e+ IVQa- Q|

i) FUIVull e+l divul - ) (<]
As to the estimate of I¥, straightforward calculation gives us

10522 SN0 Q eIVl o + Q=105 Vullze + Y 1052 QllallOg? Vul | s
121\2325::1
SIQNa: [Vl g,
which yields
I S QU 1Q -V 5 - (2.12)

By using the integration by parts, Holder inequality, Sobolev embedding theorem and

Lemma , we have

I = = (P"(p)Vpdyu, 05 p) + (P'(p)07u, 07V p) — (P'(p)95Vp, O w)

(2.13)
=(P"(p)Vp0yu, 07 p) < 2(uw)|pll. lul - -
Based on the mass conservation equation in the system (2.6), we have
I =§/ﬂ {(Z2) (90 + divipw) — [(2) pdivu — Z2divu] {[05p%da
S I o ivadll e + (22 o ol dival o= 02 ol (2.14)
S2w)(1+ Il el - o1l -
Similar estimate as IF infers that
1 5 (I9QU + 1@l ) el I Vul - (2.15)
The term I¥ can be controlled as in the following calculation:
I =K(07QAQ — AQDFQ,079) + K(07Q0Q — Q97Q, 07 AQ) (2.16)

+ K (M, 029Q) + K(M,,02AQ),

with
Mi= Y Co02QIAQ - 02 AQIQ),

a1 taz=a,
la1];|az|>1

My= > CI(03'Q0Q - 02027 Q) .

aytaz=q,
lan],Jaz|>1

Here we have used the cancellation relation

(QOTAQ — 97 AQQ, 9;Q) + (R0 — 079Q, 07 AQ) = 0. (2.17)
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The first two terms in the last equality of (2.16) can be bounded as follows:

K(07QAQ — AQI;Q, 070 S[107Q s [|AQN 14|07 Vull L2 S V@ e [AQ o | Vul 1+
K(07Q9 - Q07Q,0;AQ) SI107 Qe[ Vull 4|07 AQ 2 S IVQ| e [Vl [ AQ - -

Holder inequality tells us

[Millze SIVQ w:|AQ|

ety Moz S IVQIae IVl gos -

Therefore,
1§ SIVQIa:(|AQ o1 |Vl

e 1AQ] ). (2.18)

For the estimate of the other terms in I*, using Holder inequality and Sobolev embedding

theorem directly, one has

18 SIV QI Full- + IV QU | AQl -l 210
Ig Sllellz= 1QN e + el g QM=) 1QU sz« + [AQI =) + QI + IVQIIZ- -
and
Iy S1Ql- Q- (1AQ1r- + 1Ql5.). 220)

Iy SIQIE QN - (1QN i+ + 1AQ ) -

At last, we estimate I}. Based on the representation of F'(Q), we only need to estimate
(09V - (|VQ|*), %u), and the others can be controlled by using a similar way. Noticing that

(02V - (IVQI’Ly), 07u) = —(07 (IVQPIs), 07 V)
SIVQI~ 105 Qle=l05 Ve + Y 1052 VQ 141052 VQI 14050 12

ajtaz=a,
1<]a1|<k—1

SIVQIE-IVulla-

and
02V - (t1(QM)I3), 07 w) SNQI e Q1 g7 IVl e
02V - (tr*(Q*)3), 05 w) SQ%- QU e V] g
one has
Iy SVl IVullas + (1@l + 1QF QI - IV ul - - (2.21)

Combining with the above estimates, we have

I* Sl g (IVelmllell e + 1V QU@ ) + (IVullzs + lldivellz) (lelF. + 1QI%F.)
QN = 1 QU IVl = + 2w llpll . el e + 2(uw) (X + ol ) el g [l ol1
+ (IVQllas + QN m) ez IVullzzs + (1@ - el + QU lell ) | AQU = + VR
HIVQIa: (1AQI o~ [[Vullas + [[Vul e[| AQ] 1+)
+ (llellz- Q- + llel g 1@z ) (1QN e + IAQII &) + QU + IVQIZ-
HIVRIE: IVl r: + (1QNm+ + QI NQU -1V ull 12+
+1QUe- QN iz AR 1= + 11Q7+) + RNz 1R 1+ (1R

e (

g T 1AQ]

7 1@ s ( He). (2.22)

a1 [|Q g (|
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Pl(p)||Loc can

We then estimate the terms in J*. Based on Lemma 2.3, we know that || P

be bounded by 2(u). Therefore

([0 pdiv]u, Z5205 p)
=(02 pdivu, 292 p) + N~ O (02 pddivu, Lo p)

P
P oy
. p’ Ve a1 78 fe% P’ e}
Slldivaf g |2 e 1050172 + > 102 dival| s [[952 pll s | 2L || o< 10 12
altaz=aq,
1<]on [<k—1
S2(u)|divul g llpl1F.
and
e P’ e
S (T Y A P S o PN o P Y B P o
T
S2(w)[[Vull -l -
Hence
It < 2(w)([divullas + [[Val:)llplF. - (2.23)
Similarly, J¥ has the following estimate:
Iy S llpllzee llall = [ Vull e |wll . - (2.24)

“?lj J4’ StI Englltf:I ar :1 :a’lcula’tICIl gl €s us tlle gStlIIla‘te
()f :]rk as
3

TE == (02(Z)Vp+ V(E)a2p pouy + Y 0o (F2)a22Vp, pdu)
hese,

o P’ P’ o a
SO ) 21V pllee NIl + IV (L) oo 105 pll 2 [l 2 ) |05 0 12
+> 02 () 41022 Vo | sl pll oo | Ol 2

a1 taz=a,

2<]a;|<k—1
S2(w) Zs(llpll ) lpll e llull - -
(2.25)
Similarly,
Ji S 2W) Z(llpl g )l - (1diva e + [ Vullz-) - (2.26)

For the estimate of J¥, based on

(QAQ) =02 (1)div(QAQ) + Y 9J(1)os Pdiv(QAQ) + Y €102 (3)022div(QAQ)

[B]=1 a1 t+az=a,
2<|a1|<k—1
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and on the other hand, it is obvious to derive that ZIB\=1 |02=Adiv(QAQ)| 1> can be
bounded by ||Q| -+ ||AQ| m=, hence by using Hélder inequality we have

I3 S 2 Z:(lpll g )@l | AQ el gy - (2.27)
The terms J¥ can be estimated as follows. Noticing that

Q)] =02 (L)div(?Q) + Y dl(D)or PP+ > Cror(2)or(Q),
PI= 221@32551’1

and using the estimates

Idiv(c* @)l S IVellz=llel e QU + llelf divQll = < llellZ @1l
> lloePdiv(@ Qe S llel IRl

|Bl=1

2
HS

and
1052div(* Q)| e < llellzr Qe

for any 1 < |ag| < k — 2, one has

Js S 2(w) Z4(|lpl (2.28)

Qllars [[ul

2 .
Hs Hs *

as)llel

At last, we estimate J¥. By using Hélder inequality, we should get the L?-norm of

[0%, %div](VQ ® VQ). Since

(VQOVQ) =02(2)div(VQ & VQ) + Y 82()9:~Pdiv(VQ © VQ)
IB1=1

+ Y 0o (H)oediv(VQ 0 VQ) .

a1 tas=a,
2< o |[<k—1

Similar estimates as J& yield that

1105, 5div](VQ © VQ)llz2 £ Z:(llpll ) (IVQ|

we + [|1AQ 1) IVQ

Hs -

Similarly,

1105, 5 div](F(@)Is)llz2 < Zs(lll i+ 1@l Q)

i) (IVQ] i + QI 1Q)]

i) -
Therefore, it holds that

I3 S2(W) Zs(1oll ) [1V QI + IV Q- | AQI 11+

(2.29)
+ 1Rl a9l = + 1Rz Q)

Fro 1Q 7o el g -

Hs
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Combining with the above estimates of JF(1 <i < 7), we get

J* < 20w (Idivel e + [Vl )l + lollze ullzzs | Vol g [l .

+32(U)«@s(||p| a) ol lull e + 2@ Zs (ol g)llull g (1divul zs + [Vl a:)
2(u) Z:(llpll g )@ 1 AQU e llull 7 + 2(w) Zulllpll sz el e QN e Nl -
+ Q(U)«@s(IIPI i) [IVQIE: + IV QI i 1AQ - + Q- Q- + 1 QU3 1] - ||u|(Hs :
2.30

By the definition of £(t) and D(t), then using the interpolation inequality

1 3
1R+ S ||Q||£2(Q)||VQH22(Q)a

we know that ||Q||1+ can be controlled by €2 (t). As a result, the terms on the right-hand
side of (2.1) can be bounded by

5

D et + 2(u)E

=2

3
2

(t) + Dz (t)E() . (2.31)
On the other hand, utilizing Lemma we can derive that

ol < Il 585 Z/P(p)wa Pde S 2(w)E(t),

lal=1
i) S E 52

e S 2wWeEt), (ol
Then I* in (2.22), and J* in (2.30) can be bounded as

[l

PS> 8+ 2)[E) +E2 ()] + D2 (1) D _EX (D), (2.32)
and
s+2
J¥ < 2(u)D3 (¢ Zs (t). (2.33)

Consequently, substituting the estimates (2.32) and (2.33) into the identity (2.8), summing
up for all 1 < k < s, and combining with (2.31) infer that there exists constant C, such that
the inequality

4 s+2

g(t)w(t)gc[z 5 (1) +2(u) [E(1)+E3( Ze (1) +2(u)D* (¢ Zs

=2

1
2

;1

&~

holds. This completes proving of Lemma 2.4.

3 Approximation System
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The aim of this section is to construct the approximation system for the active liquid
crystal model (1.2). Here we construct the approximation system by iteration. As the
method used in the a priori estimate, in which we want the L*°-norm of p be bounded by
the L*>-norm of divu, here p"*! should be bounded by the L>-norm of divu" in the iterating
approximation system. On the other hand, in order to cancel out the terms with highest
order derivative, the corresponding cancellation relation similar as the L2-estimate in the a
priori estimates for the approximation system should also be used. Thus we construct the

approximate system as follows:
(O™t Fut - Vet = DoAct!
Op™ Tt +u - Vot 4 prtidive =0,
Gu ! - Vurtt 4 PGt = LAt 4 L (4 v) Vdive !+ LV (F(Q)
—KVQT 0 VQ) + £V (QUAQTH — AQTHIQY) + %V - [(¢")2Q"],
0Q" ! +ur - VQU 4+ (QUH = Q) = TIKAQ™ + 5(e. — ")Q"
+B((Q")? = L) — e.Q (@),

(3.1)
with the initial data

(Cn—i-l7 pn—&-l’ un—',—l7 Qn+1)(t, x)|t:0 — (cin’ pin’ uz’n7 Qm)(x) , (32)
where
and

ntl _ Vulovyntt T
Here we start the approximation system with
(0% u®, Q%) (t, @) = (™, p™, u™, Q") (w). (3.3)

As to be a linear Stokes type system, the existence of classical solutions for iteration
system can be obtained directly. Here we state it in the following lemma:

Lemma 3.1 Suppose that the integer s > 3 and the initial data (c'*, p'*, u'™, Q™) €
R x RT x R3 x S satisfying

pzn c le(pm) ) L’y’ uin c H;in, cin c HS, an c Hs+1 .

pin

Then there exists a maximal number 7)',; > 0 such that the approximating system (3.1)

admits a unique solution (¢"*1, pnt1 "1 Q"T1) satisfying

e L*(0,Tr s H?) N L*(0, T ;s H*T),
pt e L%(0, T 45 L7) N L*(0, T;Z+17HP’(p o)

w"tt e L0, Ty ys Han ) VL0, Ty HYPY
Q" e L>(0,T; ; HST) N L*(0, T, H*).
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Proof For the iterating system (3.1), the unknown vectors are (c"!, pn+1 yntl Qntl)
in the (n+1)-th step. By the construction of the approximation system (3.1), the first equa-
tion is a linear equation about ¢"**!, which admits a unique solution ¢"*! € L>(0,T}, ;; H*)N
L*(0,T,,; H*t') on the maximal time interval [0, T, ). Similarly, the second linear equa-
tion about p"*! has a unique solution p"*+! such that p"*! € L>(0,T2, ; L)NL3(0,T2, 13 H3m) ),
here we denote the time existence as T2 ’

n

tained into the velocity equation of the iterating system (3.1), and notice that the third and

+1- Then substitute the solution p"*!* we have ob-

fourth equations of the approximating system are linear Stokes type equations, respectively.
We then derive that there exists a time T, ; < T2, such that the last two equations of the

n

approximating system admit a unique solution (u"*!, Q"*!) satisfying
ut e LOO(O,TSH;H/fn) N L2(0,TS+1;HS+1)’
Q" e L(0, TS-H? H**1)n L*(0, T3+1§ H**).

We denote T, = min{7,,,,77,,} > 0, then Lemma is finished.

To achieve the existence of local-in-time solution for system (1.2)-(1.3), the key point is
to prove that existence time sequence obtained in Lemma admits a positive uniform lower
bound. To do it, we should derive a uniform-in-n energy bound for the approximation system
(3.1). For the convenience of representation, we denote the iteration energy functionals
Ens1(t) and D, 44 (t) as

Enn(t) =" 3+ 250" T + 0™
P(p™)
pr (34)
+ G, Q™ R + KIIVQ™ e

and
Dyia(t) :=Do [V 5 + pl Va3 + (4 v) | dive™ | 3.

+ KT AQ™ I + KT VQ" . -

Similar calculation as the a priori estimate enables us to get the following iteration

(3.5)

energy bound:

%%gnﬂ(t) + Dpga(t) S (Q(Und) + 1)53 ()71 (1)D; (1)

+D; (£)Ensa(t) + Z £ (t) (5§+1(t) + D%—H(t)) +Di (t)&% (t)girl(t)

2 EL (1) + 2 )EL (1)) 2" E i (1)

_|_
D
=
3
L
=
+
-
N—
/N
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Then we prove Theorem 1.1 in the next section.

4 Local Well-Posedness With Large Initial Data

First, we can obtain the existence of the uniform time for the iteration system (3.1) in
the following lemma.
Lemma 4.1 Assume that (¢, p"t1 "1 Q") is the solution to the iterating equa-

tion (3.1), for any fixed positive constant M, we define

T, 41 = sup {T €0,T;.1); sup Enya(t) +/ Dyt (t)dt < M} )
tel0,7] 0
where T, > 0 is the existence time of the iterating approximating system (3.1). Then
there exists a constant time 7" > 0 depending on the coefficients of the equation (1.2), M
and £, such that
Thi1>T>0.

Proof The proof is almost the same as in Lemma 5.2 of [27]. Here we omit the details
for simplicity.

The proof of Theorem 1.1 For any fixed M, if £™ < M, then based on Lemma
4.1 , there exists a T > 0 such that for all positive integer n and ¢ € [0,7] the following
inequality holds:

T
Al + 1 e+ T, + Q"+ KITQ W + [ (Dol T
+ [ V[ + (€ ldive G + TR IVQ ™ |7, + DK AQ™ 3. ]dr < M.
Then, by the standard compactness arguments, we obtain that the system (1.2)-(1.3) admits
the unique solution (c, p,u, Q) € (RT x RT x R3 x R?) satisfying
T
Aolp) + el + lull, + 1QNE: + KIVQ|E- +/O [DollVell3-
+ 1| Vullf + (o + €)lldival . + TK(VQ[5. + TE2(|AQ|I7.]dr < M.

Finally, we claim that @ € S(()g). In fact, QT is also the solution of the system (1.2)-(1.3),
then the uniqueness of the solution tells us QT = @. On the other hand, taking the trace on
the @-equations of the system (1.2), and multiplying by tr@), then simple calculations and
the traceless of the initial datum Q™ give us tr(Q) = 0 by applying the Gronwall inequality.
The proof can be found in the proof of Lemma 3.2 of [17].

Therefore, the proof of Theorem 1.1 is finished.

5 Global Classical Solution on T? with Small Initial Data

The main goal of this section is to study the global-in-time existence of classical solutions

(¢, p,u, Q) near a constant state (c.,1,0,0) on the torus T? with small initial data for the
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system (1.2)-(1.3), namely, to study the rewritten system (1.11). Firstly, for some small

positive constant number 7, we define the energy functionals as follows:

E,(t) = /3P<1+@>|g| dz + Z/ (FEe — ) |02 gfPda + Z/ (1+ 0) — n)|02ul*dx

|a|=1 |ae|=0
+ ) I+ ed2ull3e + lEllhe + QI + KIIVQ3:-. ,

Ia\*s

D) =3 Y [ FD0moP s + 41Tl + 5 vl + TNV QI

lee|=1

+ TK?|AQ|3. + Dol VéE|3

Hs -

We then obtain global energy estimates for the system (1.11)—(1.12) in the following
lemma.

Lemma 5.1 There exists a small constant 7y > 0, depending only on the coefficients of
the system (1.11) and |1+ g/, such that if (c. + ¢, 1+ o, u, Q) is the solution constructed
in Theorem 1.1, then for all 0 < n < no,

s+3

1de (1) +D,(t) < CD,( an :

where the positive constant C' depends only on the coefficients of the system (1.11) and s.
Proof For global energy bound, we need more dissipation comparing with the a priori
estimates in Section 2. Firstly, for the L?-estimate of system (1.11), we take the scalar
product of the four equations of system (1.11) with ¢, Pll(r;m 0, (1+o0)uand —KAQ + Q +
c.Qtr(Q?), respectively. Summing up with the resulting identities and integrating over T?

yields that

Ql*'dz + Do||Velz: + | VullZ:

b [ e EER IR + 1+ )luf + KIVQP +1QF +

+ (u+v)|[divu: + TK?[|AQ|Z: + TK[IVQ||7 +Fc*||Q||‘i4 +TeQl e

— (u- V&, — (odivu, P'(1 + 0)) — (P'(1+ 0)Vo,u) + (9, (£ 1f;’)Jrolw( lfg‘-’ u),|ol?)
—(F(Q)Is — KVQ O VQ,Vu') — K(QAQ — AQQ,Vu") — 0, ((¢ 4 ¢.)*Q,Vu")

+ (u- Vu, KAQ — Q — ¢.QtrQ?) — (QQ — Q, KAQ) + (QQ — QQ, Q + c.QtrQ?)

— EQ, ~KAQ + Q + .QuQ?) +2c.TK(QQ? AQ) +II(Q%, ~KAQ + Q + .QuQ?)

(5.1)

The same calculations as the basic energy estimates in the a priori estimates, we have

Is+1s =T +1g =T110=0,
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and

Tis = —2c*FK/ 01| VQ[2da — c*FK/ IV(1QP)2de < 0.
T3 T3
Through direct calculation, one can bound other terms of Z as follows:

Ty + 7y S el a (| Vel 22| Vul 2z + || divul| 2 [Vl 2z [ ol a1

I + I3 S Vol ez (llelm [[ullm)* (I ell 2 [ Vul 22)

and

T < (lellz Q) * (IVel 2V QI r2) * |AQ] 2
+IVell 2 [VQI = (1Qllar + 1QU2)
Ty S 1QUm VO ez (|AQI 22 + VQ 22 + IVQII 21| Q1132) -

We estimate the term Z,. Direct calculation tells us

(@Q.VuT) SlelZallQlIVullre < lella Vel 2| QU Vul 2
(€@, VuT) S llelcallQla I Vullze < (el Qe ) * (I1VEll L2 IVQIIz2) * [Vull e

and

0.8(Q, VuT) < o] T |Qll e | Vull 22 < 10w P IVQIZ2 + 51Vl 22,

_2’u

where we have used Sobolev interpolation inequality || f||zs < ||V f| e for f € H'(R3), and
Cauchy inequality. Consequently, we derive that

I; <C[llelm Vel 2 Qs + (el m 1@ r) * (1Vel L2 VQI z2) * [Vl e

c 2 4 2 (5'2)
+ 5o Pl VQIZ: + IVl .

Consequently, putting the above estimates into (5.1), we obtain

30 / @2+ Z5E2 o+ (1 + o) ul*+ K|VQP + QP + $1Q*dx + Do|| Ve[ 7= + 41| Vull3

+ (p+ v)lldivul|Z. + TEZ[AQIL: + (TK — 5;1o.*c) [VQIZ: + TedlQ 7 + T QI
S(lelli lullr) IVl a1V ul a4+ [19ull2 [V ell 2 el + 1@l 1V2 2 QU Vel

+ (el 1Qle ) 2 (I1VEll 21V Ql =) * (IVullz2 + 1AQz2) + 1V 22 [ VQY 2
< (1Qlle + Q=) + 1QUm 1VQllz2 (1AQlI 2 + IVQ 12 + [VQl 2 [QIZ:) . (5.3)

Secondly, we concern with the higher order estimate for the system (1.11). For any
positive integer 1 < k < s, acting the derivative operator ¢ (|a| = k) on the four equations of

the system (1.11), then taking scalar product of the resulting identities with 92, £ 1(_1;;9) 0% o,
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(14 0)0%u and —KO*AQ + 0%Q, respectively, over the torus T3. Integrating by parts gives

us
b [ o P02 + (1 0t + KIEVQL + 0GP

+ Dol|02 Vel e + w07Vl + (u+ v)]|07 divull7: + TE?[07 AQI[7- + TK [0y VQl[7
=1F +J",
(5.4)

where

—(07 (u-VQ),0;Q) — (97 (u-Ve),07¢) + (07 (2Q — @), 07Q)
Tk I

_<P/(1 + Q)@gVQ,@?U) - <Pl(1 + g)@fdwu,@fg}

k
ZS

T 30,(FE) 1920) — fu- VO o, PUED 00 0) 4 0,92V - (7 + .)°Q), )

140

Tk ¥
K(02V - (QAQ — AQQ), 92u) + K (92(Q0 — 0Q), 92AQ)
¥

K(0; (u-VQ),0;AQ) — K(5;V - (VQ © VQ),J;u)

Ik

+ 507 [eQ], KOy AQ — 07Q) + {07V - (F(Q)Is), 0y w)

Tk I

+BT(0 (Q? — “F1s), ~K 97 AQ + 95Q) + e.T (95 [QrQ?), K9gAQ — 93.Q)

g k
Iy, 7

and

T* =—([02, (1 + o)div]u, ZLEED 92 o) — ([82,u - V]o, Tt g2 p)

140 140

TE
+ {02, u - Viu, (1+ 0)05u) + (02, T2 Vo, (1+ 0)9u)

140

J- 2]" jak

+ ([0, T Alu, (1+ 0)95u) + (1 + v)([0F, 15 Vdivlu, (1 + 0)95u)

$’1+g

It

K([07, 15div/(QAQ — AQQ), (1 + 0)07u) + 0. {07, 15 div]((€ + ¢.)*Q), (1 + 0)07 u)

) T+p

Ts T
<[a§7 1+lev]( (Q)H3 - KVQ © VQ)? (1 + Q)a;xu> .

TIE
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We then estimate the terms Z* and J*. We first estimate Z*. By the estimates of ]{’“
and I¥, we have
k
I S lull e (
k
Z; SRl we

Qllz) + IVullz (llell. + Q)

Vel ue
Qll z-
Noticing the fact that p has uniform positive lower and upper bounds as it near 1, i.e. 1+ o

is L bounded. Then utilizing the estimates of I¥ and I}, we derive that Z¥ and Z} are

bounded by C|o||% . ||ull z., where C is a constant.

g +IVQlae

(5.5)

We then turn to control the term ZF¥ by dividing it into the following three terms:

IF =0.,(00V - (Z*Q), 0%u) + 20,¢.(0°V - (6Q), 0%u) + 7.c2(9°V - Q, 0%u)
:I§1 + I§2 + I§3 :

We control ZF, by dividing it into the following three parts:

I = - 0 (@0Q,00Vu") = > 0.0 (001E027eQ, 95 VuT)

a1tas=a

=) 0.CNC, (02007050 Q, 05V )

a—Q]
ataztaz=a,
1<]as|<k-1

:Igu + I§12 + I§13 .

Straightforward calculation implies that

T S NEl2105QN 2105Vl e S Nlellr 1QU - |Vl - -
As to the estimate of ZF,,, it is obvious that it can be bounded by ||¢|| g« ||&] 7+ || Q| &+ || Ve £

for the case |a1] =0 or |ay| = k. For the other cases, i.e. 1 < |a;| < k — 1, by using

105 c052eQ| L2 < 105 el zallOn>el el @l < lIEll.

Q”Hsv

we get
Iz S llell%.

Qllm-

We last deal with the term ZF , for obtaining the estimate of ZF,. When |a3| = k — 1, we

have
051 e052c05 Qe S 1105 el < 1052¢l| La |05 Qll e S €l

Qll e -

As 1 < |as| < k — 1, the following estimate holds:

05 é0;2¢0;2 Q| e < 1105 el 241052 ¢] 241|077 Ql e < llellF-

Qll - -

Hence one can derive that

T5is < llel

~

Qll g
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Putting the previous estimates together, we have

Tor < (Iléll - 1Q| Qlly-)

By using similar methods as the above estimates, we can derive that

5, < (el g 1@ He - (5.7)

We last estimate the term Z}; before completing the estimate of ZF. By using Holder

Vul

EP (5.6)

me + ||€]| ars

[Vl

#e +le] Q)

inequality, we have

2 4
I5s < |olel|og QL2105 Vull e < Z5=

|02QIZ: + 51107Vl Z- - (5.8)
As a result, there exists a positive constant C such that

¢ <C(Jlel - Q| Qllr+) (1 + el )
92Q1> + 5105 Vull7.

e+ el
(5.9)
+

o2ct
2p
In order to finish the estimate of Z¥, we only need to estimate Z¥, since the remainder
terms in Z* can be estimated as controlling the corresponding terms in I*. The following
calculation
102(EQ)II2 <[lél o< 0@ 2 + 102E 2l Qb + D CaM|02 el 141052 Q] s

a1 taz=a,
1<]ar|<k—1

Sliel

Ql

a1 |Ql s + M€l g | QN 125

implies that
73 < (llel

e + 1AQ ) - (5.10)

Q| Qllu:) (I1Ql

The remainder terms in Z* have the following estimates:

#el| @l s + el

Ty SIVQIas (1AQN ms-: [IVullmre + IVl o1 | AQ 1) (5.11)
7 SVl (IVQlla IVull e + |AQ me Jul - )
and
Iy SIVQIH:IVullm: + (1Qla + QU )R - IVl -
Iio SIQN - 1Q - (1AQN rr= + QU ) » (5.12)
7 <RI 1QN - (1AQ1 = + Q- -
Bases on the above estimates of If (1 <4< 11), one can get the estimate of 75 as
7+ <220 Qs + 4102 Vuls + C{llull . (190 -1l + 19 QU121 1)
+ [ Vullas (125 + 1Q11%.) + Qs QU g [ Vullas + [lollF. llull .
+ (llell Qe + el - Ql ) (1 + el ) Vullzre + [V Q| -
x (1@ as + [Vullers) (IVQllars + llullers) + (1@l ers + 1QUF) QN e IV 115

+IVQIE
+ 1+ [1Qlx+)

Qllze + 12l 1Q1r-) (1@ - + 1AQU )
1AQl- +1Qll-) }- (5.13)

Val e + ([1é]
1Qlz+ 1Q1 - (
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Next it turns to estimate the terms on J*. In fact, we only need to estimate the terms
J& since the other terms can be bounded as the corresponding terms in J*. The difference
is that we should use the bound of 1 + p. Now we control the term jﬁk. The term can be
divided into the following three parts:

T =0,([0%, li—gdiv} (@%Q), (1 + 0)0%u) — 20,c.([02, ﬁgdiv] (€Q), (14 0)05u)

+0.c([07, 1, div]Q, (1 + 0)07 u) (5.14)

T 140
:j6k1 + jﬁkg + jﬁki‘?) .

Similar calculation as the estimate of Z¥ gives us

T8 S Ps(lellg)lelms (el g IVQI s + [IVél a1 Ql z+ ) Il - ,
Tty S Ps(lell =) (Nell - 1V Qs + Vel Q=) 1ull e
and
Ty S Ps(lell g )V Qe lull g -

Putting the above three estimates together, one has

Jo SZs(llellgre) (L + lellzz-) (el s
+ 2ol

VQIw: + [IVel = 1Q1s- ) 1wl -
IVQ|[ = lull g - (5.15)

i)

By the estimates of J*, one can easily get the bound of the rest terms of J* as follows:

It SVl mellell?. ,
Ty Sl g | V] g (5.16)
TI5 SPs(lell gl gl
and
TIE SPlellgo)llull g IV ullare
Ty SP: (el ) 1QN -1 AQ e llull - (5.17)
JIi SPlellz) (IVQIH: + IVQIa |AQ ms + Rl m+ 1Q] o + 1QNFr- QU iz ) l1ull gz -

Combining with the above estimates, we then have

T* <Vl (

T+ llull e

lo] ullge) + Zslellz) (el e + 1Vullas + 1VQ o) l[ull -
+ Z(loll ) (L + Nlellze ) (el IV QUL me + 1Vel - Qe + QUL [ AQ e ) [l -
+ Z(loll ) (IVQIE: + IV QU 1 AQ = + 1Ql - 1Q g+ + 1QN17- 19 g7 )l gy -
(5.18)

Based on the construction of terms on the right-hand side of identity (5.4) and the
bounds of Z% and J*, we can find that more dissipation should be needed for the purpose
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of getting the global in time solution. The positive of P'(1 + ) enables us to obtain some
dissipation by acting the derivative operator 0% (|a| = k) on the velocity equations of system
(1.11) for any integer 1 < k < s — 1 and taking scalar product of the resulting identity with
9271 g over the torus T3, that is

(0,00, 92+ o) + (FUE gty gt )

1+o
=— (02 (u- Vu), 02 ) + ([02, LEEDV]p, — 02+ ) + (92 (ﬁ(um +(u+ u)v@uvu)) ,050)
,flk yzk <73k
+ <a;f(1igv (F@Q)I; - KVQ® vcz)) L0 0) + K (02 (15 V - (QAQ — AQQ)), 05 0)
pA s
+ 0,002 (59 (@ +¢)*Q) ), 02 0) (5.19)

Tk
We now deal with the terms on identity (5.19). The first term on the left-hand side of (5.19)

can be rewritten as (0,02u, 09 o) = 3 & ([|02u+02 1 o||2. — (|02 ul[ 22— (|05 0]l 22) + R1+Ro

by using the mass conservation equation in system (1.11) with
Ry = —(00divu, 82 (u- Vo)), Rp=—(92divu,ds ((1+ o)divu)).
Straightforward calculation gives us

Ru SIVullgellull a1V ol g,
Ra Sl + oll |07 divul|Z: + Cllul

VU/HH;

e oll i (5.20)

by using the Holder inequality, Sobolev embedding theory.

We then estimate the terms on the right-hand side of the identity (5.19). One can
calculate directly to get

A S Nulla

VUHHS

QHHM j2k§°928(”@|

0| (5.21)

HS) i]é

For the estimate of .f, by using the Hélder inequality and Lemma 2.3, and noticing
that || = k < s — 1, one has

(02 (1 Au), 02 o)
=02 () Au+ T500Au, 2 o)+ Y CaO (15) 097 Au, 05 )

1+e T \l+e
a1toaz=qa,
1<]on|<k—1

<102 () Il Aullzs+ D0 105 (55 las 02> Aullze )05+ ol 2
o<k

+ g e 107 Aull 2 05 el 2

SCZ(llell )Vl

Hs

oll iz + g o= 1105 Aull 2 |05 o 2 -
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On the other hand, Cauchy inequality infers that
(wll92 Aullz2 + G+ v) 92 Veivul 22 )| 2511105 ol 22

<i /1r3 Pl(r;g) |02t o|2da + 2(p? + v2) || HQHLmHP}(fj’g) || Loe <||8§Au||%2 + ||8§Vdivu|]2L2> .

Hence we can bound .#f as

140

P'(1 a
7 <OP. el ) Vel el + % [ 2852102 0P da

+2(p? 4+ 2| 1+g||L°°|| P,lirfg | o (||8aAuHLz + H@O‘lequLz) (5.22)

for some constant C.

To estimate ZF, we can use the similar controllation as I} to derive that

I8 S (1 Zslllell ) (1M + 1Qllw: + V@l + [1AQN k) IVQIa-llell 7 - (5:23)

As to the estimate of #F, which can be divided into the following three parts:

I35 =K (07 (1};)div(QAQ — AQQ). 95 o) + K (1,07 div(QAQ — AQQ), 95 o)
+ ) O K02 (1) 022 div(QAQ — AQQ), 927 o) .
a1taz=qa,

1<|on|<k—1
Noting the fact that 1 < |o| < s — 1, then one has
107 (+35) div(QAQ — AQQ) 22 <N07 T 2 (IVQI < [AQI L~ + [AQV Q| 1~ ]|Q )

SZ (el HNQN - 1AQ -
107div(AQQ — AQ)|| 2 S(I1QI[m- + [VQI 1-)[ AR

Hs
and
1057 () 922 div(VQAQ — AQQ) 112 S Zi(llell i) (1R s + IV Q1+
for 1 <|ay| < k — 1. Hence the following bound holds:
IE S 1+ Polloll ) (1Qllms + IV QI )| AQ 1+l ol - - (5.24)

It remains to estimate the last term #F. Since

I3 =00 (15 V - (2Q)), 95 0) + 20.¢.(05 (5 V - (€Q)), 97 o)
+ 0,208 (115 V - (Q)), 951 o) -

Similar as the estimates of J§, we deduce that
105 (57 - @@)l> S (1+ Zulllel ) (1l 192l - 1@l - + 1203 19 Q- )
105 (457 - (@) e S (1 + Zlllell i) (Il -1 Q) ).

s+ ||¢
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As to the estimates of the last part of .#¥, by using the Holder inequality, Sobolev embedding
theory and Cauchy inequality, we have

a*cf(ﬁa(ﬁgv . Q),@O‘HQ)
=020 (T)V @+ 7500V - Q.0 o) +ouch Y GO () 00°V - Q.07 )

ajtaz=a,
1<|ay |<k—1

<CZ(lel g)IIVQI - lloll g + ocil 5 =102V - Qll 221|050l | 2
P’ « leY
<i [ R0 e + ot I i e 102 - QL
+ CZs(llollg)IVQI a=llell - -

Gathering the above estimates, we then obtain

78 <0 (14 2ulli)) (198 1@l e + 1l 19 Q- ) (1+ 1l -l
Ol IVQU- el + 4 [ Z2lor 1P da
+ o2l kg e | iy o192V - QU (5.25)

On the other hand, for the case k = 0, straightforward calculation enables us to get

3 (lu+ Vel = [l = 1Vl ) + 3 | ZE21T0Pde 1+ ol v
e B s e [200% + 02) (I Aule + [ Vdivals ) + 02|V - Q3]
IVl 1V ole + (11 + 1@l + I9Ql + 1AQl e ) IV Ql - ol

+ (e 1) 18Q el - + (1@ 19l 22 + 10121V Q) )
x (L+ el a2) IV ellz2 - (5.26)

Hs

Therefore, combining with the estimates of .#; (1 < ¢ < 6) and R, Ry, then summing
up with 1 <k < s — 1 for identity (5.19), and combining with (5.26), we deduce that

P'(1 e}
38 (fu+ Tl — ol — lol) + 3 & [

laf=1

21es = Clt ) (| Auls + IVdivulyns ) = Clon, )9 - QU3pms
ullg-lella- + 2. lells) (el + [ Vula-)
+ (14 2ulela)) (IQU + QN + 19Ql - + 1AQl -+ ) IVQ el -

+ (1 2ulels)) (IRl + V@l )12 VQlu el -

+ (1+ 2.0ellg)) (Il 1Qlu + e ol (5.27)

— 11 + ol |divul

SIVull

ol s

Hs

el + Ps(llell )

QI ) (1+ el

Hs

Hs
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Here we denote C'(u, v) = 2(,ug+l/2)HﬁgHL00 H pfl(;rﬁg) HLOo ’

2¢t < TE | we choose

il | 7t
L= |l P’ (1+¢)

C(04,¢) = 02,

Under the assumption 2Q|a*
o

1. 1 1 ptv 'K
= -min 1
o =73 { I 5 tgyllzee |l ol 20(# v)? [[1+ellLee +C(p,v) * 2C(04,c4) }

and let n € (0, 1], then multiply (5.27) by 1 and add the results to the inequality (5.4) to
get

ééit{/g P(1+g)|g|2dx—|— Z/ Pl(JlrJ;g) |aag|2d$—|- Z/ (1+40)— )|8§u|2dx

lee|=1 la|=0

£ 3 IV T el + el + 1@l + KIVQl. ) S / P40 g g2y
lal=s la|=1
(B nC O ) IVl + (e v) = (1 + olle + Ol ) divul.

+ (555 = nC(0+, ) IVQIF: + TE?[|AQ|%: + Dol Vel
s+3

nd> & (1)
k=1

(5.28)
by using the definition of &,(t) and D, (t). The above estimates (5.28) is also can be written

as
s+3

1dg (1) +D,(t) < CD,( Zé’ (5.29)

with the constant C' depending on the the coefficients of the original system (1.11) and s.
This completes the proof of Lemma 5.1.

5.1 The Proof of Global Well-Posedness

In this section, we concern with the proof of existence of global-in-time solution near
the constant state (c., 1,0,0) for the original system (1.2). Here we will use the continuum
arguments.

Firstly, we define the following energy: £(t) = ||c||H + ||g||H + lullZs + 1QI% 1 -
Obviously, by the definition of &£, (t), there exist constants C and C,

1+0)
C mln{ inf ’Tg

_UOainf‘l—i_Ql_nOal_nO}a

C =20t 21+ ofpe +2+ K,

1+e HLoo

such that ég(t) <&, (t) < éé(t) . Consequently, we have CE™ < & ,(0) < CEm
s+3

Next we make a definition as T = sup {7‘ > 0;8upycpo, € Z 5i < } with the

1
2

positive constant C' to be mentioned in Lemma 5.1. Let ¢y = %mln {1, W}, if the

s+3 k-
initial energy £™ < €y, we can deduce that C Y1 E7(0) < i < % . By using the continuity of
k=1
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the energy function &, (t), one can immediately get 7% > 0. Obviously, the above analysis

s+3 X
implies that L&, (t) + (1 -C> 5,7% (t))D,](t) < 0 holds for all t € [0,7*]. Hence for all
k=1
t € [0,T*], we have
£,(t) < &,(0) < CE™.

k

Consequently, sup {C ZZJS EF (t)} < 1. Based on the above analysis, we now claim
te[0,T*]

that T* = 4oo. Otherwise, by utilizing the continuity of energy function, there exists a

k
sufficient small positive number € > 0, such that  sup {C Z;ﬁ E? (t)} < 2 < 1, which
te[0,T* +¢]
contradicts to the definition of T*. As a result, there is a constant C7, depending only on

the coefficients of the system (1.2) and s, such that the following inequality
sup (||5||§zs+||9||§1s+|IUI|§JS+||Q|!?1s+1)(t)+/ Do| Ve(r) || + 5 1 Vu(r)[|F.dr < CL&™
> 0

holds. This completes the proof of Theorem 1.2.
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