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Abstract: In this paper, matrix inequalities are studied. Using two new scalar inequalities,
the weighted geometric mean inequalities and Hilbert-Schmidt norm inequalities for matrices are
obtained, the results are refinements of some corresponding inequalities.
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1 Introduction

Let M,,, be the space of m x n complex matrices and M, = M, ,. Let ||| denote
any unitarily invariant norm on M, if |[UAV|| = ||A]| for all A € M,, and for all unitary
matrices U,V € M,,. The A > 0 is used to mean that A is a positive definite matrix. The
Hilbert-Schmidt norm of A = (a;;) € M,, is denoted by

2

Al = { D lai;?
i,j=1
Let A, B € M,, be positive definite and 0 < v < 1, the weighted geometric mean of the
matrices A and B is defined as follows:

A#,B = A?(A T BA 2)" A3,

for v = %, we denote the geometric mean by AfB.
Kittaneh and Manasrah [ proved that if A, B € M, are positive definite and 0 < v < 1,

then
2ro(A+ B — 2A4B) + A4, B + At,_,B

<A+B (1.1)
< 2s0(A + B — 2A4B) + Af,B + Af,_,B,

where ro = min{v,1 — v}, sp = max{v,1 — v}.
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In 2018, Liu and Yang [? refined the inequalities (1.1) as follows:

2ro(A+ B — 2A4B) + A4, B + Aty _,B
<A+B

< a(v)(A+ B —2A44B) + A#,B + At1_,B
< 250(A+ B — 2A4B) + A4, B + A, _, B,

(1.2)

where a(v) = 2 — 2(v — v?).
Let A, B, X € M, such that A and B are positive definite. Bhatia and Davis ¥/ proved
that if 0 < v <1, then

2(|A2XBz2|| < ||A"XB'"" + A" XB"|| < ||AX + XB||,

where the second inequality is known as Heinz inequality.
He and Zou ¥ showed if 0 < v < 1, then

||[AX + X B3 < ||[A"X B + A" X B"||3 + 2s0||AX — XB||3, (1.3)

where sp = max{v,1 — v}.
Kittaneh and Manasrah 5! showed if 0 < v < 1, then

|A"XB'™" + A*™" X B"||3 4 2ro||AX — XBJ|3 < ||AX + XB| %, (1.4)

where 79 = min{v, 1 — v}, inequality (1.4) is the inverse of inequality (1.3).

In 2018, Liu and Yang ! refined inequality (1.3) as follows:

||[AX + XBJ||3 < ||A"XB"™" + A" XB||2 + a(v)||AX — XB||3, (1.5)

where a(v) = 3 —2(v — v?).

Recently, many interesting articles have been devoted to study the unitarily invariant
norm inequalities for matrices, see [6-8] and references therein.

In this paper, we first give two scalar inequalities. By using scalar inequalities, we

improve inequalities (1.2) and (1.5).
2 Main results

In the following, we give two scalar inequalities which will turn out to be useful in the

proof of our results.

Theorem 2.1 Let a,b>0,0<v <1, then

a+b<a’b ™l + a4y (v)(Va — Vb)?, (2.1)
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Proof To prove inequality (2.1), we only need prove that the following inequality
(1 —~y())(a+b)+2y(v)Vab < a’b " +a'~"b".

Let a = €*,b = €Y, by the definition of the hyperbolic function, we have

z—y 5) 9 r—y
S 4 (G = (0= v?) < cosh((1 - 20)(5

D (22)

1
(v—1?— Z)cosh(

Let z = 5%, by the series expansion of the hyperbolic coshz function, we know that
inequality (2.2) is equivalent to

2 4

AT G- <14

1—20)2%22 (1 —2v)%:*
- (- 2p | (-2t

51 1 -, (2.3)

(v—vz—i)(l—l-

For 0 <wv <1, it is easy to know that inequality (2.3) holds.
This completes the proof.
Corollary 2.2 Let a,b> 0,0 <wv <1, then

(a+0b)* < (a7 +a'"b")? + y(v)(a — b)?, (2.4)

where y(v) = 2 — (v —0v?).

Proof By inequality (2.1), we have

(Va+vVbh2:—(atb 2 +a=zb)2 = a+b—(a’b'"" 4 a'"b)

IN

(3 — (=) (Va— Vb

hence 5
(a+0b)* < (a"b' " +a*""b") + (Z — (v —12%))(a —b)*.

This completes the proof.
Theorem 2.3 Let A, B € M,, be positive definite. Then

9ro(A+ B — 2A4B) + A4, B + A#_,B

<A+B
(2.5)
<~(v)(A+ B — 2A4B) + A4, B + At,_,B

< a(v)(A+ B — 2A4B) + A#,B + Af,_,B,

where v € [0,1], ro = min{v,1 — v}, y(v) = 2 — (v —0?),a(v) =

Njw

—2(v —v?).
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Proof By inequalities (1.2), we know that the first inequality of (2.5) holds. For
the second inequality of (2.5). Since T' € M,, is positive definite, it follows by the spectral

theorem that there exists unitary matrix U € M,, such that
T=UPU",

where P = diag(A1, A2, -+, An),A; > 0,1 < j <n. Fora>0,b=1, by inequality (2.1), we
have
a+1<a’+b7"+7(v)(Va-1)%

and so
P+I<P'+ P 440w (VP -1 (2.6)

Multiplying the left and right sides of the inequality of (2.6) by U and U*, we have
T+I<T 4T 4+4)(VT - 1),

let T = A=2 BA~z, the second inequality of (2.5) holds. For 0 < v < 1, it easy to know that

Therefore, Theorem 2.3 is a refinement of the inequalities (1.2).
This completes the proof.
Theorem 2.4 Let A, B, X € M, such that A, B are positive definite. Then

JAX + XBI < [[A"XB'™ + A" XB"|3 + 7(0)||AX — XBI}, (2.7)

where v € [0,1], y(v) = 3 — (v —v?).

Proof Since every positive definite matrix is unitarily diagonalizable, it follows that

there exist unitary matrices U,V € M,, such that
A=UPU*",B=VRV"

where Pl = diag()‘lv)\%”' 7)\n)7P2 = diag(ulvu%"' 7un)7)\j7:uj > 071 S] <n.
Let C = U*XV = (¢;;), then

A'XB'"" + A" XBY = (UPU*)"X(VP,V*)'"0 + (UPLU*) """ X(VP,V*)"
=UPY(U*XV)P,"V* + UP " (U*XV)PyV*
=U(PYCP,”" + P}"CPy)V*,

and
|APXB'"* + A'""XB"|3 =||PfCP,~" + P} "CP}|[3

= 2?,3:1()‘;)/‘;71) + A37UN;)2|CiJ’|2-
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Using the same method, we have

n

IAX + XBl[3 = > (A + p;)%ess %,

ii=1
JAX = X B3 = > (A — 1;)%]ess
ij=1
By inequality (2.4), we obtain
D BT AN e P+ () D s = )2l =Y i+ ) e
ij=1 ij=1 ij=1

Therefore, inequality (2.7) holds, it is a refinement of the inequality (1.5).
This completes the proof.
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