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Abstract: In this paper, matrix inequalities are studied. Using two new scalar inequalities,

the weighted geometric mean inequalities and Hilbert-Schmidt norm inequalities for matrices are

obtained, the results are refinements of some corresponding inequalities.
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1 Introduction

Let Mm,n be the space of m × n complex matrices and Mn = Mn,n. Let ‖·‖ denote
any unitarily invariant norm on Mn, if ||UAV || = ||A|| for all A ∈ Mn and for all unitary
matrices U, V ∈ Mn. The A > 0 is used to mean that A is a positive definite matrix. The
Hilbert-Schmidt norm of A = (aij) ∈ Mn is denoted by

‖A‖2 =

(
n∑

i,j=1

|aij |2
) 1

2

.

Let A,B ∈ Mn be positive definite and 0 ≤ v ≤ 1, the weighted geometric mean of the
matrices A and B is defined as follows:

A]vB = A
1
2 (A−

1
2 BA−

1
2 )vA

1
2 ,

for v = 1
2
, we denote the geometric mean by A]B.

Kittaneh and Manasrah [1] proved that if A,B ∈ Mn are positive definite and 0 ≤ v ≤ 1,

then
2r0(A + B − 2A]B) + A]vB + A]1−vB

≤ A + B

≤ 2s0(A + B − 2A]B) + A]vB + A]1−vB,

(1.1)

where r0 = min{v, 1− v}, s0 = max{v, 1− v}.
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In 2018, Liu and Yang [2] refined the inequalities (1.1) as follows:

2r0(A + B − 2A]B) + A]vB + A]1−vB

≤ A + B

≤ α(v)(A + B − 2A]B) + A]vB + A]1−vB

≤ 2s0(A + B − 2A]B) + A]vB + A]1−vB,

(1.2)

where α(v) = 3
2
− 2(v − v2).

Let A,B, X ∈ Mn such that A and B are positive definite. Bhatia and Davis [3] proved
that if 0 ≤ v ≤ 1, then

2||A 1
2 XB

1
2 || ≤ ||AvXB1−v + A1−vXBv|| ≤ ||AX + XB||,

where the second inequality is known as Heinz inequality.
He and Zou [4] showed if 0 ≤ v ≤ 1, then

||AX + XB||22 ≤ ||AvXB1−v + A1−vXBv||22 + 2s0||AX −XB||22, (1.3)

where s0 = max{v, 1− v}.
Kittaneh and Manasrah [5] showed if 0 ≤ v ≤ 1, then

||AvXB1−v + A1−vXBv||22 + 2r0||AX −XB||22 ≤ ||AX + XB||22, (1.4)

where r0 = min{v, 1− v}, inequality (1.4) is the inverse of inequality (1.3).
In 2018, Liu and Yang [2] refined inequality (1.3) as follows:

||AX + XB||22 ≤ ||AvXB1−v + A1−vXBv||22 + α(v)||AX −XB||22, (1.5)

where α(v) = 3
2
− 2(v − v2).

Recently, many interesting articles have been devoted to study the unitarily invariant
norm inequalities for matrices, see [6-8] and references therein.

In this paper, we first give two scalar inequalities. By using scalar inequalities, we
improve inequalities (1.2) and (1.5).

2 Main results

In the following, we give two scalar inequalities which will turn out to be useful in the
proof of our results.

Theorem 2.1 Let a, b > 0, 0 ≤ v ≤ 1 , then

a + b ≤ avb1−v + a1−vbv + γ(v)(
√

a−
√

b)2, (2.1)

where γ(v) = 5
4
− (v − v2).
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Proof To prove inequality (2.1), we only need prove that the following inequality

(1− γ(v))(a + b) + 2γ(v)
√

ab ≤ avb1−v + a1−vbv.

Let a = ex, b = ey, by the definition of the hyperbolic function, we have

(v − v2 − 1
4
)cosh(

x− y

2
) + (

5
4
− (v − v2)) ≤ cosh((1− 2v)(

x− y

2
)). (2.2)

Let z = x−y
2

, by the series expansion of the hyperbolic coshz function, we know that
inequality (2.2) is equivalent to

(v−v2− 1
4
)(1+

z2

2!
+

z4

4!
+ · · · )+(

5
4
− (v−v2)) ≤ 1+

(1− 2v)2z2

2!
+

(1− 2v)4z4

4!
+ · · · . (2.3)

For 0 ≤ v ≤ 1, it is easy to know that inequality (2.3) holds.
This completes the proof.
Corollary 2.2 Let a, b > 0, 0 ≤ v ≤ 1, then

(a + b)2 ≤ (avb1−v + a1−vbv)2 + γ(v)(a− b)2, (2.4)

where γ(v) = 5
4
− (v − v2).

Proof By inequality (2.1), we have

(
√

a +
√

b)2 − (a
v
2 b

1−v
2 + a

1−v
2 b

v
2 )2 = a + b− (avb1−v + a1−vbv)

≤ ( 5
4
− (v − v2))(

√
a−

√
b)2,

hence

(a + b)2 ≤ (avb1−v + a1−vbv)2 + (
5
4
− (v − v2))(a− b)2.

This completes the proof.
Theorem 2.3 Let A,B ∈ Mn be positive definite. Then

2r0(A + B − 2A]B) + A]vB + A]1−vB

≤ A + B

≤ γ(v)(A + B − 2A]B) + A]vB + A]1−vB

≤ α(v)(A + B − 2A]B) + A]vB + A]1−vB,

(2.5)

where v ∈ [0, 1], r0 = min{v, 1− v}, γ(v) = 5
4
− (v − v2), α(v) = 3

2
− 2(v − v2).
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Proof By inequalities (1.2), we know that the first inequality of (2.5) holds. For
the second inequality of (2.5). Since T ∈ Mn is positive definite, it follows by the spectral
theorem that there exists unitary matrix U ∈ Mn such that

T = UPU∗,

where P = diag(λ1, λ2, · · · , λn), λj > 0, 1 ≤ j ≤ n. For a > 0, b = 1, by inequality (2.1), we
have

a + 1 ≤ av + b1−v + γ(v)(
√

a− 1)2,

and so

P + I ≤ P v + P 1−v + γ(v)(
√

P − I)2. (2.6)

Multiplying the left and right sides of the inequality of (2.6) by U and U∗, we have

T + I ≤ T v + T 1−v + γ(v)(
√

T − I)2,

let T = A−
1
2 BA−

1
2 , the second inequality of (2.5) holds. For 0 ≤ v ≤ 1, it easy to know that

α(v)− γ(v) =
1
4
− (v − v2) = (v − 1

2
)2 ≥ 0.

Therefore, Theorem 2.3 is a refinement of the inequalities (1.2).
This completes the proof.
Theorem 2.4 Let A,B, X ∈ Mn such that A,B are positive definite. Then

||AX + XB||22 ≤ ||AvXB1−v + A1−vXBv||22 + γ(v)||AX −XB||22, (2.7)

where v ∈ [0, 1], γ(v) = 5
4
− (v − v2).

Proof Since every positive definite matrix is unitarily diagonalizable，it follows that
there exist unitary matrices U, V ∈ Mn such that

A = UP1U
∗, B = V P2V

∗,

where P1 = diag(λ1, λ2, · · · , λn), P2 = diag(µ1, µ2, · · · , µn), λj , µj > 0, 1 ≤ j ≤ n.
Let C = U∗XV = (cij), then

AvXB1−v + A1−vXBv = (UP1U
∗)vX(V P2V

∗)1−v + (UP1U
∗)1−vX(V P2V

∗)v

= UP v
1 (U∗XV )P 1−v

2 V ∗ + UP 1−v
1 (U∗XV )P v

2 V ∗

= U(P v
1 CP 1−v

2 + P 1−v
1 CP v

2 )V ∗,

and
||AvXB1−v + A1−vXBv||22 = ||P v

1 CP 1−v
2 + P 1−v

1 CP v
2 ||22

=
∑n

i,j=1(λ
v
i µ

1−v
j + λ1−v

i µv
j )

2|cij |2.
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Using the same method, we have

||AX + XB||22 =
n∑

i,j=1

(λi + µj)2|cij |2,

||AX −XB||22 =
n∑

i,j=1

(λi − µj)2|cij |2.

By inequality (2.4), we obtain

n∑
i,j=1

(λv
i µ

1−v
j + λ1−v

i µv
j )

2|cij |2 + γ(v)
n∑

i,j=1

(λi − µj)2|cij |2 ≥
n∑

i,j=1

(λi + µj)2|cij |2.

Therefore, inequality (2.7) holds, it is a refinement of the inequality (1.5).
This completes the proof.
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几个改进的矩阵不等式

胡兴凯,刘武双

(昆明理工大学理学院,云南 昆明 650500)

摘要: 本文研究了矩阵不等式的问题. 利用两个新的标量不等式, 得到了矩阵的加权几何均值不等式

和Hilbert-Schmidt范数不等式, 所得的结果改进了相应的不等式.
关键词: 标量不等式; 加权几何均值不等式; 正定矩阵; Hilbert-Schmidt范数
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