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Abstract: The main purpose of this paper is to present Hecke-type double sums associated

with mock theta functions. By using the method of Bailey pairs, we obtain three known identities

for the seventh and tenth order mock theta functions and two new Hecke-type double sums as third

order mock theta functions.
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1 Introduction

In his last letter, written in January 1920 to Hardy, Ramanujan [1] defined four third
order mock theta functions, ten fifth order mock theta functions in two groups each having
five functions and three seventh order mock theta functions, among them one third order
mock theta function is defined as

f(q) :=
∑
n≥0

qn2

(−q)2n
.

Here we first introduce the standard notation and terminology for q-series [2]: the q-shifted
factorials of complex variable x with the base q are given by

(x; q)∞ = (x)∞ :=
∏
n≥0

(1− xqn), (x; q)n = (x)n :=
(x; q)∞

(xqn; q)∞
,

for all integers n.
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In [3], Watson studied the third order mock theta functions and introduced the three
one shown below, which were later found in the Lost Notebook [1].

ω(q) : =
∑
n≥0

q2n(n+1)

(q; q2)2n+1

, ν(q) : =
∑
n≥0

qn(n+1)

(−q; q2)n+1

, ρ(q) : =
∑
n≥0

(q; q2)n+1q
2n(n+1)

(q3; q6)n+1

.

In recent years, the Hecke-type double sums in terms of mock theta functions have made
several appearances in the literature. In [4], Andrews presented Hecke-type double sums as
the fifth and seventh order mock theta functions by utilizing the Bailey pairs. The seventh
order mock theta functions are defined as

F0(q) :=
∑
n≥0

qn2

(qn+1)n

, F1(q) :=
∑
n≥1

qn2

(qn)n

, F2(q) :=
∑
n≥0

qn(n+1)

(qn+1)n+1

.

With the aid of the Bailey pairs from [4], Choi [5, 6] established the Hecke-type double sums
associated with tenth order mock theta functions, two of them are defined as

φ(q) : =
∑
n≥0

q(
n+1

2 )

(q; q2)n+1

, ψ(q) : =
∑
n≥0

q(
n+2

2 )

(q; q2)n+1

.

In [7], Hickerson and Mortenson used the Appell–Lerch sums and Hecke-type double sums to
facilitate the study of mock theta functions. They rewrote the respective Hecke-type double
sums from [5, 8].

F2(q) =
1
J1

f3,4,3(q3, q3, q), (1.1)

φ(q) =
1

J1,2

f2,3,2(q2, q2, q), (1.2)

ψ(q) = − q2

J1,2

f2,3,2(q4, q4, q), (1.3)

where let x, y ∈ C∗ = C− {0}, a and m be integers with m positive,

Ja,m := j(qa; qm), Ja,m := j(−qa; qm), Jm := Jm,3m,

j(z; q) := (z, q/z, q)∞ =
∑

n

(−1)nznq(
n
2),

fa,b,c(x, y, q) :=
( ∑

r,s≥0

−
∑
r,s<0

)
(−1)r+sxrysqa(r

2)+brs+c(s
2).

The first object of this paper is to prove the above Hecke-type double sums associated
with mock theta functions by utilizing another Bailey pair.

Theorem 1.1 Identities (1.1)–(1.3) are true.
Recently, Cui and Gu [9] established certain new mock theta functions and expressed

classical mock theta functions in terms of Hecke-type double sums as corollaries, such as

ν(q) =
1

J2,4

f1,2,1(iq
3
2 ,−iq

3
2 , q).
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The second object of this paper is to show the following Hecke-type double sums as the
third order mock theta functions f(q) and ω(q) similar to ν(q).

Theorem 1.2 We have

f(q) =
1

J1,4

f1,2,1(−q,−q, q), (1.4)

ω(q) =
1

J1,2

f1,2,1(q3, q3, q2). (1.5)

In the next section, we list some useful results on q-series. We prove Theorems 1.1 and
1.2 in Sections 3 and 4, respectively.

2 Preliminaries

For brevity, in this paper, we also employ the usual notation

(x1, · · · , xr)n = (x1, · · · , xr; q)n = (x1)n · · · (xr)n,

(x1, · · · , xr)∞ = (x1, · · · , xr; q)∞ = (x1)∞ · · · (xr)∞.

The pair of sequences (αn, βn) is called a Bailey pair with respect to a, namely

βn =
n∑

r=0

αr

(q)n−r(aq)n+r

,

for all n ≥ 0.
The following identities from [10] will be used frequently.

∑
n≥0

(ρ, σ)n(aq/ρσ)nβn =
(aq/ρ, aq/σ)∞
(aq, aq/ρσ)∞

∑
n≥0

(ρ, σ)n(aq/ρσ)n

(aq/ρ, aq/σ)n

αn, (2.1)

and

∑
n≥0

(ρ, σ)n(a/ρσ)nβn =
(aq/ρ, aq/σ)∞
(aq, aq/ρσ)∞

∑
n≥0

(ρ, σ)n(a/ρσ)n

(aq/ρ, aq/σ)n

(
ρσ(1 + aq2n)− aqn(ρ + σ)

ρσ − a

)
αn.

(2.2)

The identity (2.1) is known as Bailey’s lemma. And the equality (2.2) is also a useful tool.
In [11], Zhang and Song used (2.2) to derive a q-series expansion formula and obtained some
Hecke-type identities as special cases.

Next we shall introduce two Bailey pairs. One is a Bailey pair relative to 1 due to
Andrews [4].





α2n = −(1− q4n)q3n2−2n

n−1∑
j=−n

q−j2−j ,

α2n+1 = (1− q4n+2)q3n2+n

n∑
j=−n

q−j2
,

βn =

{
0, n = 0,
1

(qn)n
, n > 0,

(2.3)
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The other is a Bailey pair relative to q2 given by Srivastava [12].





α2n =
(1− q4n+2)

(1− q)(1− q2)
q3n2+n

n∑
j=−n

q−j2
,

α2n+1 = − (1− q4n+4)
(1− q)(1− q2)

q3n2+4n+1

n∑
j=−n−1

q−j2−j ,

βn =
1

(qn+1)n+1

. (2.4)

We point out that the Bailey pair (2.4) can be also derived by combining [13, Eq. (6.3)] and
[13, Eq. (3.12)]. Utilizing (2.4), Andrews [13] showed that [13, Eq. (6.9)] is equivalent to
the equality [4, Eq. (7.23)] for seventh order mock theta function F1(q).

3 Proof of Theorem 1.1

Proof For (1.1), substituting the Bailey pair (2.4) into (2.2) with ρ, σ →∞, we obtain

LHS =
∑
n≥0

qn2+nβn =
∑
n≥0

qn2+n

(qn+1)n+1

,

RHS =
1

(q3)∞

∑
n≥0

qn2+n(1 + q2n+2)αn

=
1

(q3)∞

(∑
n≥0

q4n2+2n(1 + q4n+2)α2n +
∑
n≥0

q4n2+6n+2(1 + q4n+4)α2n+1

)

=
1

(q)∞

(∑
n≥0

q7n2+3n(1− q8n+4)
n∑

j=−n

q−j2 −
∑
n≥0

q7n2+10n+3(1− q8n+8)
n∑

j=−n−1

q−j2−j

)

=
1

(q)∞

(∑
n≥0

q7n2+3n

n∑
j=−n

q−j2 −
∑
n≥0

q7n2+11n+4

n∑
j=−n

q−j2

−
∑
n≥0

q7n2+10n+3

n∑
j=−n−1

q−j2−j +
∑
n≥0

q7n2+18n+11

n∑
j=−n−1

q−j2−j

)
. (3.1)

We replace n with −n− 1 in the second sum and n with −n− 2 in the fourth sum, and let
n = (r + s)/2, j = (r − s)/2 in the first two sums and n = (r + s− 1)/2, j = (r − s− 1)/2
in the latter two sums to arrive at

RHS = F2(q) =
1

(q)∞

({ ∑

r, s ≥ 0

r ≡ s (mod 2)

−
∑

r, s < 0

r ≡ s (mod 2)

}
q

3
2 r2+4rs+ 3

2 s2+ 3
2 r+ 3

2 s

−
{ ∑

r, s ≥ 0

r 6≡ s (mod 2)

−
∑

r, s < 0

r 6≡ s (mod 2)

}
q

3
2 r2+4rs+ 3

2 s2+ 3
2 r+ 3

2 s

)
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=
1

(q)∞

( ∑
r,s≥0

−
∑
r,s<0

)
(−1)r+sq

3
2 r2+4rs+ 3

2 s2+ 3
2 r+ 3

2 s

=
1

(q)∞
f3,4,3(q3, q3, q).

It is evident that the identity (3.1) appears in [4, Eq. (7.24)]. The fact implies that the
same identity can be obtained by the different Bailey pairs. A similar situation will arise in
the following steps to prove (1.2) and (1.3).

For (1.2), applying the Bailey pair (2.4) to (2.2) with ρ = −q, σ →∞, we have

LHS =
∑
n≥0

(−q)nq(
n+1

2 )βn =
∑
n≥0

(−q)nq(
n+1

2 )

(qn+1)n+1

= φ(q),

RHS =
(−q)∞
(q3)∞

∑
n≥0

q(
n+1

2 )(1 + qn+1 + q2n+2)
1 + qn+1

αn

=
(−q)∞
(q3)∞

(∑
n≥0

q2n2+n(1 + q2n+1 + q4n+2)
1 + q2n+1

α2n +
∑
n≥0

q2n2+3n+1(1 + q2n+2 + q4n+4)
1 + q2n+2

α2n+1

)

=
(−q)∞
(q)∞

(∑
n≥0

q5n2+2n(1− q6n+3)
n∑

j=−n

q−j2 −
∑
n≥0

q5n2+7n+2(1− q6n+6)
n∑

j=−n−1

q−j2−j

)
.

And after simplifying similar to the first identity (3.1), we deduce (1.2).
For (1.3), inserting the Bailey pair (2.4) into (2.1) with ρ = −q, σ →∞, we conclude

LHS =
∑
n≥0

(−q)nqn(n+3)/2βn =
∑
n≥0

(−q)nqn(n+3)/2

(qn+1)n+1

,

RHS =
(−q)∞
(q3)∞

∑
n≥0

qn(n+3)/2

1 + qn+1
αn

=
(−q)∞
(q3)∞

(∑
n≥0

q2n2+3n

1 + q2n+1
α2n +

∑
n≥0

q2n2+5n+2

1 + q2n+2
α2n+1

)

=
(−q)∞
(q)∞

(∑
n≥0

q5n2+4n(1− q2n+1)
n∑

j=−n

q−j2 −
∑
n≥0

q5n2+9n+3(1− q2n+2)
n∑

j=−n−1

q−j2−j

)
.

Multiplying both sides of the above equality by q, we get

ψ(q) =
∑
n≥0

(−q)nq(
n+2

2 )

(qn+1)n+1

=
(−q)∞
(q)∞

(∑
n≥0

q5n2+4n+1(1− q2n+1)
n∑

j=−n

q−j2 −
∑
n≥0

q5n2+9n+4(1− q2n+2)
n∑

j=−n−1

q−j2−j

)
,

and by a straightforward calculation, we conclude (1.3). This completes the proof.
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4 Proof of Theorem 1.2

Proof Inserting the Bailey pair (2.3) into (2.1) with ρ =
√

q, σ = −√q, it follows
that

2LHS =2
∑
n≥1

(−1)n(q; q2)nβn = 2
∑
n≥1

(−1)n(q; q2)n

(qn)n

:= 2M1(q),

2RHS =
(q; q2)∞
(q2; q2)∞

∑
n≥0

(−1)nαn

=
(q; q2)∞
(q2; q2)∞

(∑
n≥0

α2n −
∑
n≥0

α2n+1

)

=
(q; q2)∞
(q2; q2)∞

(
−

∑
n≥0

q3n2−2n

n−1∑
j=−n

q−j2−j +
∑
n≥0

q3n2+2n

n−1∑
j=−n

q−j2−j

−
∑
n≥0

q3n2+n

n∑
j=−n

q−j2
+

∑
n≥0

q3n2+5n+2

n∑
j=−n

q−j2

)
.

We replace n with −n in the second sum and n with −n− 1 in the fourth sum, and then let
n = (r + s + 1)/2, j = (r − s− 1)/2 in the first two sums and n = (r + s)/2, j = (r − s)/2
in the latter two sums to get

2RHS =
(q; q2)∞
(q2; q2)∞

(
−

{ ∑

r, s ≥ 0

r 6≡ s(mod2)

−
∑

r, s < 0

r 6≡ s(mod2)

}
q

1
2 r2+2rs+ 1

2 s2+ 1
2 r+ 1

2 s

−
{ ∑

r, s ≥ 0

r ≡ s(mod2)

−
∑

r, s < 0

r ≡ s(mod2)

}
q

1
2 r2+2rs+ 1

2 s2+ 1
2 r+ 1

2 s

)

=− (q; q2)∞
(q2; q2)∞

( ∑
r,s≥0

−
∑
r,s<0

)
q

1
2 r2+2rs+ 1

2 s2+ 1
2 r+ 1

2 s

=− (q; q2)∞
(q2; q2)∞

f1,2,1(−q,−q, q).

It is easy to see that

∑
n≥1

(−1)n(q; q2)n

(qn)n

=
∑
n≥0

(−1)n+1

(−q)n

,

and owing to the fact from [14, Eq. (13)]

f(q) = 2
∑
n≥0

(−1)n

(−q)n

,
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we have

f(q) = −2M1(q),

which yields (1.4).
Substituting the Bailey pair (2.3) into (2.1) with q → q2, ρ = −1 and σ = −q to give

LHS =
∑
n≥1

(−1,−q; q2)nqnβn = 2
∑
n≥1

(−q2; q2)n−1(−q; q2)nqn

(q2n; q2)n

:= 2M2(q),

RHS =
2(−q)∞
(q)∞

∑
n≥0

qn

1 + q2n
αn

=
2(−q)∞
(q)∞

(∑
n≥0

q2n

1 + q4n
α2n +

∑
n≥0

q2n+1

1 + q4n+2
α2n+1

)

=
2(−q)∞
(q)∞

(
−

∑
n≥0

q6n2−2n

n−1∑
j=−n

q−2j2−2j +
∑
n≥0

q6n2+2n

n−1∑
j=−n

q−2j2−2j

+
∑
n≥0

q6n2+4n+1

n∑
j=−n

q−2j2 −
∑
n≥0

q6n2+8n+3

n∑
j=−n

q−2j2

)
.

After replacing n with −n in the second sum and n with −n−1 in the fourth sum and letting
n = (r + s + 1)/2, j = (r − s− 1)/2 in the first two sums and n = (r + s)/2, j = (r − s)/2
in the latter two sums, we obtain

RHS =
2(−q)∞
(q)∞

(
−

{ ∑

r, s ≥ 0

r 6≡ s (mod 2)

−
∑

r, s < 0

r 6≡ s (mod 2)

}
qr2+4rs+s2+2r+2s+1

+

{ ∑

r, s ≥ 0

r ≡ s (mod 2)

−
∑

r, s < 0

r ≡ s (mod 2)

}
qr2+4rs+s2+2r+2s+1

)

=
2(−q)∞
(q)∞

( ∑
r,s≥0

−
∑
r,s<0

)
(−1)r+sqr2+4rs+s2+2r+2s+1

=
2q(−q)∞

(q)∞
f1,2,1(q3, q3, q2).

It is not difficult to see that
∑
n≥1

(−q2; q2)n−1(−q; q2)nqn

(q2n; q2)n

=
∑
n≥0

qn+1

(q; q2)n+1

.

In view of [15, Eq. (26.84)]

ω(q) =
∑
n≥0

q2n(n+1)

(q; q2)2n+1

=
∑
n≥0

qn

(q; q2)n+1

,
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then we have

M2(q) = qω(q),

which implies (1.5). We finish the proof.
Remark 1. Inserting the Bailey pair [4, Eqs. (7.13), (7.16), (7.17)] into (2.1) with

ρ =
√

q, σ = −√q, we conclude

M3(q) :=
∑
n≥0

(−1)n(q; q2)n

(qn+1)n

=
(q; q2)∞

2(q2; q2)∞
f1,2,1(−q,−q, q).

Namely, M1(q) = −M3(q).
2. Andrews, Dixit and Yee [16] established the following result by considering a new

partition-theoretic interpretation of ω(q).

∑
n≥1

pω(n)qn =
∑
n≥1

qn

(qn)n+1(q2n+2; q2)∞
= qω(q).
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Mock theta函数的Hecke型双重和
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摘要: 本文研究了mock theta函数对应的Hecke型双重和的问题. 利用Bailey对的方法, 获得了三个与

七阶和十阶mock theta函数相关的等式和两个新的与三阶mock theta函数相关的Hecke型双重和.
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